Author Correspondence author
Rice Genomics and Genetics, 2012, Vol. 3, No. 7 doi: 10.5376/rgg.2012.03.0007
Received: 21 May, 2012 Accepted: 27 Jun., 2012 Published: 29 Jun., 2012
Hu et al., 2012, Genetics and Molecular Breeding for Salt-Tolerance in Rice, Vol.3, No.7 39-38 (doi: 10.5376/rgg.2012.03.0007)
Salt stress is one of the main environmental constraints for the losses of rice yield. In this paper, we introduced the mechanisms of rice salt-tolerance by the following three aspects: the integrity of membrane systems, ionic compartmentation, and osmotic adjustment. We also briefly presented the three methods for identifying rice salt-tolerance, which specifically refer to biological and agronomic salt resistance, as well as the response of in vitro cells to salt stress. Then we summarized the progresses of mining salt-resistance rice germplasm resources, mapping the QTLs conferring salt-tolerance, cloning slat-tolerant genes of importance and breeding salt-tolerant rice varieties. Through a long-term evaluation of this trait, some rice germplasm involved in salt tolerance have been identified. More than 70 QTLs controlling the salt-related traits of Na+/K+ contents and survival days in rice have been identified. Two salt-tolerance genes SKC1 and DST have been cloned. A series of transgenic lines with salt-tolerance and polymerization lines of two salt-resistant genes (SKC1 and BADH) in rice have been developed in our lab. Finally, we discussed the prospects of rice salt-tolerant mechanism research and their applications in practice, which might provide an important reference for further studies of salt-tolerance in rice.
. PDF(233KB)
. FPDF(win)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Shikai Hu
. Hongjian Tao
. Qian Qian
. Longbiao Guo
Related articles
. Rice
. Salt-tolerance
. Germplasm
. QTL
. Genetics and breeding
Tools
. Email to a friend
. Post a comment