Genetic Diversity of the Upland Cotton Varieties Bred in North Xinjiang Region Revealed by Agronomic Phenotypes
Author Correspondence author
Cotton Genomics and Genetics, 2012, Vol. 3, No. 2 doi: 10.5376/cgg.2012.03.0002
Received: 18 Sep., 2012 Accepted: 15 Oct., 2012 Published: 20 Nov., 2012
Ai et al., 2012, Genetic Diversity of the Upland Cotton Varieties Bred in North Xinjiang Region Revealed by Agronomic Phenotypes, Cotton Genomics and Genetics, Vol.3, No.2 8-16 (doi: 10.5376/cgg.2012.03.0002)
We attempted to reveal the genetic background and phenotypic characteristics of the varieties bred in Northern Xinjiang through the study on genetic diversity of the 38 cultivated varieties approved in Xinjiang. The results showed that the trait of the fruit branch number in the 13 tested phenotypic traits had the highest genetic diversity index; along with the year in different breeding period, the bred cotton varieties exhibited that the growing period gradually shortened, fruit-branch number increased, cotyledon node and plant height significantly increased; and boll weight per boll obviously increased, seed index also showed an upward trend with boll weight changes; the boll number per plant and lint percentage also presented overall increasing trend, however, the lint percentage left a great space to be enhanced; the fiber length and strength gradually increased in the bred varieties, and micronaire values showed a downward trend. Overall the quality traits went to be reasonable with each passing periods. Genetic analysis indicated that 38 domestic bred varieties could be clearly divided into two groups with similar phenotypic traits, similar genetic background, the same breeding unit and the same type varieties were better clustering together. The clustering results would be relatively accord with the evolution trend in their real characteristics and genetic background. Overall, the domestic bred varieties had become major cultivating varieties in Northern Xinjiang, The reason would lie in the reasonable utilization of the genetic composition from the American components and the Yellow River cotton germplasms as well as Liaomian cotton series of special early maturing cotton area, which would provide insights, basis and developing direction to break out the genetic component narrow issues in Xinjiang cotton breeding program.
Xinjiang, as the largest high-quality cotton producing region in China, are the commodity cotton production base and export base, the total output of cotton, yield per unit, the cultivating area has been for many years ranked the first in China. In recent years, with the rapid development of cotton production and an increasing expend of cotton planting area, a variety of pests and diseases increasingly developed and spread, the hazard was increasing year by year that seriously influenced cotton yield, quality and benefits of cotton planting. It has become increasingly prominent that the yield potential and resistance level of the existing varieties in Xinjiang region could not meet the requirements in cotton production. In production, most of the released cotton varieties with insufficient yield potential and poor genetic stability resulting in poor quality and low resistance to disease were difficult to meet the demand of the development of cotton production and market demands.
1.1 Quality trait phenotypes and genetic diversity index
Twelve of quality traits were chosen to analyze the diversity index (Table 1), the results showed there were huge difference existing among the tested varieties, in which the main stem hairy presented highest index of genetic diversity (1.362 5), followed by the blades of the leaf cleft and boll size (1.328 7 and 1.310 4, respectively), while the lowest genetic diversity was the leaf color at the blooming stages (0.787 7).
Table 1 The performance of the quality traits and the genetic diversity index of the domestic bred varieties in Northern Xinjiang
|
1.2 Variation parameters of phenotypic trait and genetic diversity
Based on investigation data of agronomic traits and fiber quality, the variation status of thirteen phenotypic traits were carried out the statistical analysis (Table 2). The variation of the boll per single plant maximum reached 24.56% in eight of major agronomic traits, followed by plant height, height of cotyledon node and the number of fruiting branches, which were 17.32%, 13.02% and 11.90%, respectively, while the minimum coefficient of variation was the trait of the length of growth period, that was only 3.23%. The size and range of variation coefficient of the traits presented positively correlationship (Li et al., 2005), demonstrating that there were plenty of the variation of yield traits existing in varieties developed Northern Xinjiang.
Table 2 The comparison between the variation parameters of the phenotype traits and diversity index of the domestic bred varieties in Northern Xinjiang
|
The highest genetic diversity index was the number of the fruiting branches in the 13 phenotypic traits, which reached 2.077 739, followed by micronaire value, seed index and single boll weight. While the lowest genetic diversity index was the rate of elongation, that was only 0.867 286.
Table 3 The differences of phenotype traits of the domestic bred varieties in Northern Xinjiang |
Inview of the changes in phenotypic traits, the trait of the growth period the varieties gradually shortened overall (130, 125, 126), which indicated that the maturity should gradually adapt the climates of the Northern Xinjiang; The number fruiting branches (8.8, 8.4, 9.3) overall gradual increased, and the height of the cotyledon node (5.2 cm, 5.8 cm, 6.3 cm) and plant height (52.6 mm, 62.4 mm, 78.9 mm) had an obvious increasing trend. Therefore, the changes of these traits related to genetically yield improvement led to change in the traits of variety maturity and plant height in breeder’s selection strategy.
In order to figure out the differences of the phenotypic traits among the bred varieties in Northern Xinjiang, the traits of boll number, boll weight, lint percentage, fiber length and so on were divided into five groups, that is:â… , â…¡,â…¢,â…£, and â…¤, and then statistically analyze the distribution of the number of the bred varieties in Northern Xinjiang within five groups (Table 4).
Table 4 The quantitative distribution of the key traits of the domestic bred varieties in Northern Xinjiang |
Dendrogram was built based on the sum of squares method (Figure 1), and Euclidean genetic distance between the different species were calculated (Table not showed). Euclidean genetic distances of different varieties ranged from 1.599 8 to 25.108 5 with an average of 4.941 7. There was biggest genetic distance (25.1085) existing between Xinluzao No1 and No 16, which might be caused due to the genetic basis of different varieties. Whereas the smallest genetic distance (1.599 8) existed between two varieties of Xinluzao No. 6 and No. 7.
Figure 1 Clustering tree of the domestic bred varieties in Northern Xinjiang based on the main agronomic traits |
Series varieties of Xinluzao were divided into two groups based on the threshold as 15.07 (Figure 1). The group one contained 30 varieties and the groups two contained eight varieties. The threshold value was set at 10.04, the group one can be sub-divided into two sub-groups, wherein the sub-group one consisted of 16 varieties and the sub-group two consisted of 14 varieties. Statistical results from phenotypic traits showed that differences in phenotypic traits in each group owned their representative (Table 5) and presented the different characteristics of the bred varieties in Northern Xinjiang.
Table 5 The mean of the trait values in different clustering groups of the domestic bred varieties in Northern Xinjiang |
In the group I, the varieties with a similar genetic background, the same breeding unit, and the same types were preferably clustered together. For example, two low gossypol cotton varieties bred by Nongyishi agricultural Institute, Xinluzao No. 3 and No. 15 were clustering in Group I.
Table 6 Genetic components of the domestic bred varieties in Northern Xinjiang |
Therefore, the cluster analysis in this study were in line with the true characteristics of the bred varieties, the varieties with similar phenotypic traits and or with the same genetic basis were clustering in the same branches, which was consistent to the genetic evolution trend in the Xinluzao series.
2.1 Experimental materials
38 cultivars used in this research were developed during the periods from the year of 1981 to 2008 approved and promoted in Xinjiang. All of materials were provided by Nongqishi Agricultural Scientific Institute and the variety breeder’s organization, which represents the overall breeding level of upland cotton varieties in the northern Xinjiang.
Design of field trials, investigation of phenotypic traits and methods as well as phenotypic data processing were following up the descriptions (Ai et al., 2009).
Bie S., Kong F.L., Zhou Y.Y., Zhang G.M., Zhang Q.Y., and Wang X.G., 2001, Genetic diversity analysis representative elite cotton varieties in three main cotton regions in China by RAPD and its relation with agronomic characteristics, Zhongguo Nongye Kexue (China's Agricultural Science), 34: 597-603
Cheng G., 2005, Genetic diversity of basic germplasm and their offsprings of upland cotton in China, Master degree thesis, Zhongguo Nongye Kexueyan (The Chinese Academy of Agricultural Sciences)
Guo J.P., and Zeng L.P., 2005, Analysis on line family of the early maturing upland cotton varieties of Xinjiang and the discussion of breeding direction, Zhiwu Yichuan Zhiyuan Xuebao (Journal of Plant Genetic Resources), 6(2): 210-215
Huang Z.K., 2007, China's cotton varieties and its pedigree, Zhongguo Nongye Chubanshe (China Agricultural Press)
Li R.Q., Ma Z.Y., Wang X.F., Zhang G.Y., and Li X.H., 2005, Genetic diversity of transgenic insect-resistant cottons based on agronomic traits and fiber quality, Zhiwu Yichuan Zhiyuan Xuebao (Journal of Plant Genetic Resources), 6(2): 210-215
Liu W.X., Kong F.L., Guo Z.L., Zhang Q.Y., Peng H.R., Fu X.Q., and Yang F.X., 2003, Analysis about genetic basis of cotton cultivars in China since 1949 with molecular markers, Yichuan Xuebao (Acta Genetics Sinica), 30(6): 560-570
Sun J., Chu G.X., Zhang W.H., and Jin W.H., 1999, The main character trend of especially early maturing varieties of cotton in Xinjiang, Zhongguo Mianhua (Cotton China), 26(7): 14-16
Xu Q.H., Zhang X.L., Nie Y.C., 2001, Genetic diversity evaluation of cultivars (G. hirsumtm L.) from the Chang Jiang River Valley and the Huanghe Valley by RAPD, Yichuan Xuebao (Acta Genetica Sinica), 28(7): 683-690
Yu S.X., 2003, Genetic improvement of short season cotton effe- ctiveness of evaluation and premature but premature senesc- ence of biochemical genetic research in China, Doctoral thesis, Yang L., Xibei Nonglin Keji Daoxue (Northwest A&F University)
. PDF(134KB)
. FPDF(win)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Xiantao Ai
. Xueyuan Li
. Junduo Wang
. Juyun Zheng
. Hong Sha
. Tuerxunjiang
. Likun Duo
. Ming Mo
Related articles
. Upland cotton
. Domestic bred varieties in North Xinjiang region
. Phenotype traits
. Genetic diversity
Tools
. Email to a friend
. Post a comment