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Abstract As a globally significant food and plant protein crop, the yield and protein content of soybeans are the core target traits in
breeding. However, due to the influence of the interaction between the genetic background and environment of complex quantitative
traits, the efficiency of traditional phenotypic selection and genetic improvement is limited. To enhance breeding efficiency and
prediction accuracy, this study explored the applicability and effectiveness of multiple machine learning algorithms in the genomic
prediction of soybean yield and protein traits. Based on the genotype (SNP) and phenotypic data of multiple soybean breeding
populations in this study, machine learning models such as RR-BLUP, Support vector Machine (SVM), Random Forest (RF),
Gradient enhancer (GBM), and Deep neural Network (DNN) were respectively constructed. Combined with feature selection
methods such as principal Component Analysis (PCA), LASSO and Boruta, the prediction accuracy and stability of the model are
systematically evaluated. The results show that nonlinear models (such as RF and GBM) have better generalization ability for
complex traits under multiple environmental conditions. The multi-trait joint prediction strategy further enhanced the model's
performance in composite indicators such as protein yield. This study demonstrates the potential of machine learning techniques in
the genomic prediction of complex quantitative traits, providing an efficient means for auxiliary selection in soybean breeding and
laying the foundation for the construction of intelligent and high-throughput breeding decision-making systems.
Keywords Soybeans; Genomic prediction; Machine learning; Yield traits; Protein content

1 Introduction
Soybean (Glycine max) has always been the main force in the global food system, especially in providing protein
and oil. It is indispensable whether for human consumption or as feed. At present, the demand for plant protein is
increasing, and the added value of soybeans has begun to gradually expand in food, industry and even global food
security (Van Der Laan et al., 2024). Strong adaptability, high protein content, and the ability to grow in different
climates make it the first choice for filling nutritional gaps in the face of climate change and dietary structure
changes (Gill et al., 2022).

However, traditional breeding does not always keep up with the pace of such demands. Breeding high-yield and
high-protein varieties is no easy task - these traits usually involve multiple genes and often interact with the
environment. Just the phenotypic identification stage alone is time-consuming and laborious. Moreover, the long
breeding cycle and high cost have further hindered the acceleration point (Ray et al., 2022). For this reason, an
increasing number of studies are beginning to shift towards genomic prediction (GP) and machine learning (ML)
technologies. With the support of high-throughput phenotypic technologies and genomic data, these new tools can
not only enhance the efficiency of selection but also demonstrate stronger predictive power than traditional
statistical models in the context of multi-data fusion. Especially for methods like random forests and deep learning,
when combined with genomic, phenotypic and environmental variables, the prediction effect is often more stable
(Yoosefzadeh-Najafabadi et al., 2021). The emergence of such models can also be regarded as a "paradigm shift"
in the field of breeding.

This study explored the application of genomic prediction and machine learning models in predicting soybean
yield and protein traits, compared the predictive performance of various genomic and machine learning models,
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and evaluated the effect of integrating phenotypic and genomic data for trait prediction. And evaluate its practical
significance for soybean breeding projects. This research will promote the modernization and precision of soybean
breeding. By enhancing the efficiency and accuracy of trait prediction, machine learning methods are expected to
accelerate the breeding process of high-yield and high-protein soybean varieties, thereby contributing to the
development of sustainable agriculture and the realization of global food security goals.

2 Genetic Basis of Soybean Yield and Protein Traits
2.1 Major and minor QTLs associated with yield and quality in soybean
The two types of traits, yield and protein, are not determined by a single gene. Behind them, there is usually a
group of QTLS working together - some large and some small (Figure 1). Years of mapping and GWAS studies
have actually identified many key loci. Some QTLS have obvious effects, and many are micro-effect QTLS with
long-term effects (Diers et al., 2018). For instance, major QTLS related to protein content are often located on
chromosomes 20 and 15. Those QTLS that regulate yield and quality tend to cluster in the same area. This overlap
is not accidental and is likely related to pleiotropy or close linkage (Tayade et al., 2023). The POWR1 gene is a
case in point - it is precisely the "protagonist" in a QTL on chromosome 20, regulating proteins while influencing
oil and yield (Goettel et al., 2022). Similar candidate genes are still being discovered, adding many new "parts" to
the breeding toolbox (Doszhanova et al., 2024; Dong et al., 2025).

Figure 1 Composition of stored mature soybean seeds. The percentage value indicates the relative weight of the corresponding
component in a seed (Liu, 1997) (Adopted from Duan et al., 2023)

2.2 Genotype-phenotype interactions and their impact on complex traits
Not every genotype behaves the same in every environment. Soybean yield and protein traits are precisely the
"typical representatives" under the influence of this G×E interaction. Some QTLS are highly active in a certain
environment but their performance weakens in a different location. Even the "temperament" of alleles can change
when the genetic background is altered (Gao et al., 2024). So, it is not enough to just look at the QTL itself; one
also needs to consider which genotype it falls on and what environment it encounters. Vymyslicky et al. (2025)
emphasized the significance of introducing G×E analysis into the breeding process. The results of online analysis
are also quite interesting. Many genes do not act alone but rather have complementary or superior effects on each
other. Some genes even have multiple traits (Fang et al., 2017). These intricate interaction relationships make it
more difficult to predict traits and further highlight the necessity of multi-environment tests and higher-order
models.
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2.3 Genetic control of protein content and amino acid composition
Protein is not only a matter of "how much", but also of "what kind". The control mechanisms of content and
amino acid composition are actually quite different. Alleles of varieties like Danbaikong have high-protein QTL
on chromosome 20. In some contexts, protein can be increased without significantly reducing yield, although
there is often a certain negative correlation between protein and oil and yield (Patil et al., 2017). Studies have
found that the genes influencing the total protein content and the mechanisms regulating the amino acid profile
may be separate, but the two often run in the same network (Duan et al., 2023; Hu et al., 2023). This is also why
the properties of proteins seem particularly "tangled". However, there have been breakthroughs in genomics,
transcriptomics and proteomics now. Guo et al. (2022) and Liu et al. (2023) have identified many candidate genes
and regulatory modules, laying the foundation for the subsequent breeding of high-protein and nutritionally
fortified soybean varieties.

3 Overview of Genomic Prediction and Machine Learning Methods
3.1 Common machine learning algorithms (RR-BLUP, SVM, RF, GBM, DNN, etc.)
When it comes to genomic prediction, the most commonly used models at the beginning were actually some
rather "old-fashioned" linear models, such as RR-BLUP or GBLUP. These models are fast in operation and
straightforward in logic, especially when traits are mainly controlled by additive effects (Rao et al., 2025).
However, when it comes to non-additive effects or complex interactions, these linear methods become a bit
challenging. At this time, SVM and SVR, which can handle nonlinearity, come in handy (Wang et al., 2022). Later
on, ensemble methods such as Random Forest (RF) and GBM began to gain popularity because they are better at
capturing complex relationships. In recent years, deep learning has also joined the fray. Technologies like MLP,
CNN, and even DNN have been employed to capture higher-order patterns from a vast array of labels, especially
when non-additive structures are quite evident (Montesino-Lopez et al., 2021). Of course, they are not always
"invincible". Many times, it still depends on the volume of data and the type of trait.

3.2 Feature selection and dimensionality reduction techniques (PCA, LASSO, Boruta, etc.)
High-dimensional data is much more troublesome to process. An obvious problem is that when there are too many
features, the model is prone to deviation. PCA is often used to compress the dimensions first, trying to retain most
of the variations while eliminating the redundanities (Monaco et al., 2021; Conard et al., 2023). Regularization
methods like LASSO are also commonly used. They automatically compress variables with small weights to 0,
thereby filtering out irrelevant features (Lourenco et al., 2022). Packaging methods like Boruta are even more
"meticulous". They repeatedly compare the true features with the scrambled "false features" and pick out the most
contributing part from them (Lopez et al., 2023). These techniques are particularly crucial for deep learning
because such models can easily overfit if they have too many features and insufficient samples.

3.3 Model training, cross-validation, and generalization performance evaluation
Whether a model is well-trained or not cannot be judged merely by the performance of the training set.
Cross-validation is a basic skill. Whether it is the K-fold or the retention method, the purpose is to test whether its
performance on new data can still be stable (Lopez et al., 2023). Parameter tuning is also indispensable, especially
for nonlinear models. For instance, grid search or automatic optimization using AutoML has basically become a
standard feature. In terms of evaluation, indicators such as predictive correlation, RMSE or AUC are generally
considered (Abdollahi-Arpanahi et al., 2020). Nowadays, many people still use ensemble prediction, combining
the results of multiple models. Although it is more complex, the results are usually more stable (Azodi et al.,
2019). As for the interpretability of models, there are now ways to open up "black box" models like deep learning.
Tools like SHAP can tell you which variable contributes the most in the prediction (Watson, 2021).

4 Model Construction and Prediction Performance Comparison
4.1 Input variable design: SNP encoding and integration of environmental factors
Not all input data can be directly used for prediction. For complex traits such as soybean yield and protein, the
variables need to be designed before modeling. SNP information often needs to be encoded first - sometimes
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additive, and sometimes dominant or dominant. How to combine them depends on the target and data situation.
Environmental information should not be overlooked either. Factors such as the planting location, year, and even
management methods, although diverse, make the model more stable when added. Especially when considering
the interaction between genotype and environment, these variables can provide additional information support and
are very helpful for improving the adaptability of prediction (Norberg et al., 2019).

4.2 Accuracy comparison and error analysis across MLmodels
Everyone wants to find the "strongest model", but the reality is often that different algorithms perform quite
differently when facing different datasets. Integrated methods like Random Forest (RF) and Gradient Elevator
(GBM) do a relatively solid job in capturing nonlinearity and complex relationships. Although SVM is not the
most complex model, it has the advantages of fast calculation and acceptable accuracy, especially when the
amount of data is large (Chakraborty et al., 2020). Deep learning is also often mentioned. For example, the
multi-layer perceptron (MLP) can indeed achieve high accuracy, but it also has high requirements for sample size
and parameter tuning. If not tuned properly, overfitting is easy (Chandra and Goyal, 2021; Nguyen et al., 2021).
Which model is good after all? It is difficult to explain in one sentence. Usually, it is necessary to compare metrics
such as R², RMSE, and MAE to see the actual error. Incidentally, the performance of the training set and the test
set also needs to be compared to determine whether there is overfitting (Robinson et al., 2017; Zhou et al., 2021).
When choosing a model in the end, people usually do not rely on just one. Instead, they try several types and then
select the one with stable performance through cross-validation.

4.3 Optimization of multi-trait joint prediction strategies
If there is more than one goal, for instance, one wants to predict both yield and protein content at the same time,
then a different approach is needed. Multi-task learning frameworks, or model stacking, are commonly used
practices at present. They can share genetic and environmental information to improve overall performance.
Adding some feature selection methods or hybrid models can usually boost the accuracy and explanatory power
(Chakraborty et al., 2020). However, how these strategies are combined still depends on specific requirements,
such as whether cross-environment prediction is needed or whether they are related to multiple traits. It cannot be
generalized.

5 Multi-Environment Trials and Environmental Interaction Modeling
5.1 Impact of G×E interactions on prediction accuracy
The performance of soybeans in different environments is actually not that easy to predict. Even if the genotypes
are the same, changes in climate or planting and management methods may still cause deviations in traits. This
so-called interaction between genotype and environment (G×E) often leads people to underestimate or
overestimate the true potential of a certain strain (Burgueno et al., 2011; Li et al., 2024). Especially for traits like
yield or protein that are influenced by multiple factors, if G×E is not taken into account, the prediction results are
often unreliable, and the selected materials are also hard to guarantee stability. Multi-environment tests (MET) and
more complex statistical modeling come into play at this point - not all models can capture this interaction, but as
long as the models keep up, they can get closer to the real performance.

5.2 Model expansion with environmental covariates (e.g., E-GP, reaction norm models)
The poor performance of many predictive models may not lie in "genes", but rather in the fact that they have
overlooked the variable of "environment". Once data such as soil, climate and management measures are
incorporated into the model, things become different. New methods such as the reaction norm model, E-GP, and
the hybrid model of factor analysis are precisely aimed at the G×E problem. They can make the model both more
accurate and easier to interpret (Piepho and Williams, 2024). Moreover, their advantages lie not only in the better
processing of current data, but also in their ability to predict genotype expression in untested environments, and
even help to develop management plans that are suitable for the environment (Mumford et al., 2023). This type of
model provides good tool support for breeding varieties that are resistant to climate fluctuations.
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5.3 Case studies on climate adaptability and stable high-protein trait prediction
Although it may only be a few percentage points of improvement, a 7% increase in prediction accuracy can
influence the selection direction of a breeding season. Some studies that combined environmental data with
genomics and phenotypes did indeed reach this level (Fernandes et al., 2024). Compared with those models that
completely ignore environmental changes, response norm or factor analysis methods perform more stably and can
identify candidate genotypes for stable production and high protein under variable and even extreme conditions
(Burgueno et al., 2011; Li et al., 2024). For breeders, the practicality of these methods does not lie in the three
words "accurate prediction", but in their ability to select materials that take into account both adaptability and
performance with greater confidence.

6 Case Studies: Application of ML-Based Prediction in Breeding Populations
6.1 Genomic prediction in the U.S. soybean core collection
At first, no one expected machine learning to perform so steadily in such complex materials, but it did perform
well in breeding big data scenarios like the US Soybean Core Germplasm Bank. Common models like RF
(Random Forest), SVM (Support Vector Machine), and MLP (Multi-Layer Perceptron) have been frequently used
in high-throughput phenotypic and genotyping data, capable of predicting agronomic traits such as yield. In
particular, some studies have attempted to run RF using hyperspectral reflection data from different environments,
and the accuracy rate can reach 84%. If another layer of model combination is added, it can even jump to 0.93
(Figure 2) (Yoosefzadeh-Najafabadi et al., 2021). The greatest significance of this method does not lie in how
"smart" the algorithm is, but in enabling breeders to select potential materials from the vast germplasm resource
bank earlier and more accurately, and thus the entire breeding process becomes faster.

Figure 2 A schematic representation of the machine learning algorithms used in this study to classify the soybean yield using
reflectance bands: (A) Multilayer perceptron, (B) Support vector machine, and (C) Random forest (Adopted from
Yoosefzadeh-Najafabadi et al., 2021)
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6.2 Trait prediction of breeding materials in China’s Huang-Huai Region
The situation of breeding work in the Huanghuai region is not so ideal. The climate fluctuates greatly and
management methods vary greatly. Relying solely on traditional methods is indeed a struggle. Against this
backdrop, machine learning models are highly regarded because they can take into account complex
genotype-environmental interactions. Especially when combined with feature selection and integrated models,
some customized predictions can better meet the actual needs of the region. Whether it is a variety with strong
adaptability or materials with relatively stable traits, the model can screen them out in advance, which has gained
a lot of initiative for local breeding (Parmley et al., 2019).

6.3 Prediction evaluation and selection efficiency in commercial high-protein/high-yield varieties
In real commercial scenarios, goal-oriented traits such as high protein and high yield were mainly achieved
through linear models in the past, but now machine learning is gradually becoming the main force. It's not that
traditional models are ineffective; rather, in situations where trait inheritance is complex and nonlinear interaction
is obvious, the advantages of ML begin to emerge. Especially the integrated model or deep learning architecture
combined with feature optimization can not only improve the prediction accuracy, but also shorten the computing
time (Yoosefzadeh-Najafabadi et al., 2021). From the perspective of breeding enterprises, the efficiency of
screening out high-quality varieties has indeed improved. That is to say, it is no longer a luxury to turn potential
materials into market products more quickly and accurately.

7 Conclusions and Future Perspectives
Machine learning has indeed performed outstandingly in genomic prediction in recent years, but it is not without
flaws. Some regularized regressions, ensemble models, and even deep learning architectures can indeed better
handle the complex "genotype-phenotype" relationships brought about by high-dimensional data, especially when
the genetic structure of traits is not simple to begin with. However, to be fair, no matter how high the accuracy rate
is, the model is still picky about the data. The scale, quality and target traits of the data will all directly affect its
performance. Sometimes, when deep models are used, the training time is several times longer, but the result is
only slightly better than that of traditional linear models. Moreover, many ML methods are inherently "black box"
and cannot explain why predictions can succeed - this is actually quite fatal for breeding decisions (especially in
the context of biological research).

By the way, relying on a single data source is indeed not enough. Nowadays, more and more people are beginning
to try to incorporate phenotypic, multi-omics (such as genomic, transcriptomic, proteomic) and even remote
sensing data, making the models more "diverse" and comprehensive. Deep learning is quite popular in this regard
and has a decent ability to handle heterogeneous and multimodal data. Once the model can capture the "signals"
from such complex combinations, it will be more confident in predicting the traits that are influenced by both
environmental and genetic factors. Moreover, using public data and commercial data together, supplemented by
interpretable modeling, sounds like a truly feasible approach for the breeding scenario (rather than just a
laboratory demo).

Ultimately, the future development of ML breeding is more like making up for deficiencies in several directions:
one is speed, no one wants to train a model for several days; One aspect is interpretability. It's not just about
"calculating accurately", but also about "explaining clearly". Another point is how to connect multi-source data.
Don't let them be scattered here and there. Automated and interpretive tools like AutoML and iML are already on
the way. Their goal is simple - to enable breeders to "get started", rather than being deterred by a bunch of
complex models. As data accumulates more and more and species are studied more deeply, these models will
eventually have to support the core pillar of smart agriculture, especially when developing soybean varieties that
are high-yielding, stress-resistant and have a relatively high protein content.
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