Improvement of wheat drought tolerance through editing of TaATX4 by CRISPR/Cas9
Published:31 Oct.2023    Source:Plant Science
As a consequence of transposon domestication, transposon-derived proteins often acquire important biological functions. However, there have been limited studies on transposon-derived proteins in rice, and a systematic analysis of transposon-derived genes is lacking.
 
Here, for the first time, we conducted a comprehensive analysis of the DDE_Tnp_4 (DDE) gene family, which originated from transposons but lost their transpositional ability and acquired new gene functions in Oryza species. A total of 58 DDE family genes, categorized into six groups, were identified in Oryza species, including 13 OsDDE genes in Oryza sativa ssp. japonica.
 

Our analysis indicates that gene duplication events were not the primary mechanism behind the expansion of OsDDE genes in rice. Promoter cis-element analysis combined with haplotype analysis confirmed that OsDDEs regulate the heading date in rice. Specifically, OsDDE9 is a nuclear-localized protein expressed ubiquitously, which promotes heading date by regulating the expression of Ghd7 and Ehd1 under both short-day and long-day conditions. Single-nucleotide polymorphism (SNP) variations in the OsDDE9 promoter leads to changes in promoter activity, resulting in variations in heading dates. This study provides valuable insights into the molecular function and mechanism of the OsDDE genes.