Polarity Proteins Shape Efficient 'Breathing' Pores in Grasses
Published:16 Feb.2023    Source:University of Bern

A research group at the University of Bern is studying how plants "breathe." They have gained new insights into how grasses develop efficient "breathing pores" on their leaves. If important landmark components in this development process are missing, the gas exchange between plant and atmosphere is impaired. The findings are also important regarding climate change.

 
Grasses have "respiratory pores" (called stomata) that open and close to regulate the uptake of carbon dioxide for photosynthesis on the one hand and water loss through transpiration on the other. Unlike many other plants, stomata in grasses form lateral "helper cells." Thanks to these cells, the stomata of grasses can open and close more quickly, which optimizes plant-atmosphere gas exchange and thus saves water.
 
For the current study, Prof. Dr. Michael Raissig, Dr. Heike Lindner and co-author Roxane Spiegelhalder from the Institute of Plant Sciences (IPS) at the University of Bern investigated the development of helper cells in the grass Brachypodium distachyon. They discovered two proteins that accumulate on opposite sides of a cell, acting like a "compass" to ensure the correct development of helper cells in grasses. The research results were published in the journal eLife.