Structure of Wheat Immune Protein Resolved--Important Tool in the Battle for Food Security
Published:25 Oct.2022    Source:Max Planck Institute for Plant Breeding Research

 Scientists from the Max Planck Institute for Plant Breeding Research and the University of Cologne in Germany together with colleagues from China have unravelled how wheat protects itself from a deadly pathogen. Their findings, published in the journal Nature, could be harnessed to make important crop species more resistant to disease.As a staple food for 40 % of the world's population, it is hard to overstate the importance of wheat for food security.

 
Crop resilience in a changing climate and resistance to infectious diseases will be the limiting factors for future food stability. In the case of wheat, one of the most economically significant pathogens is stem rust, a vicious fungus which can have devastating effects on yields.
 
Although stem rust has been infecting wheat since pre-Christian times, through the efforts of breeders and plant pathologists it had been possible to prevent any significant epidemics in the world's major wheat growing areas in the last 50 years of the 20th century. Unfortunately, this rosy picture was shattered in 1998, with the emergence of a new, highly virulent variant of wheat stem rust in Uganda. Ug99, as it is known, can attack up to 80% of the world's wheat varieties resulting, in some cases, in complete loss of yield from infected fields. In seeking to provide crops with resistance against new and emerging plant pathogens, plant scientists and breeders often scour wild varieties of some of our staple crops for genes that may provide effective immunity. The emergence of Ug99 lent particular impetus to such efforts and led to the identification of Sr35, a gene which protects against Ug99 when introduced into bread wheat.