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Abstract Cotton, as an important economic crop, its yield and quality are directly related to the development of the textile industry 

and agricultural economy. This study summarizes the relationship between the main agronomic traits of cotton (such as plant height, 

number of bolls, fiber quality, etc.) and yield and quality, discusses the urgent need for obtaining phenotypic data in large-scale field 

trials, as well as the significant value of phenotypic big data in cotton breeding and precise cultivation. At the technical level, it 

introduces the application of computer vision and deep learning in plant phenotypic identification The role of machine learning 

methods in the prediction and classification of cotton traits, as well as the automation technology of multimodal data fusion and 

feature extraction. In terms of data processing and analysis, this study explored key technologies such as image segmentation and 

extraction of cotton plant structure parameters, time series data analysis and growth dynamic monitoring, and correlation analysis 

between phenotypes and genotypes as well as environmental factors. It also analyzed the practical application and effect of the 

AI-driven cotton phenotype platform by combining large-scale experimental cases in cotton-growing areas of China and the United 

States. This study looks forward to the current challenges and proposes future development trends, aiming to provide references and 

inspirations for future cotton phenomics research, intelligent breeding and smart agriculture. 
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1 Introduction 

Cotton (Gossypium spp.) is an important economic crop related to the national economy and people's livelihood. 

Large-scale field trials are of great significance for screening superior varieties and optimizing cultivation 

measures. Every year, breeding units plant a large number of cotton varieties in different ecological zones for 

comparative trials to assess key agronomic traits such as yield, fiber quality and stress resistance. However, the 

expression of these traits is influenced by the complex interaction between genotype and environment. Accurately 

obtaining field phenotypic data is the core link in understanding the gene-phenotypic relationship and guiding 

breeding decisions. Phenotypic analysis runs through all stages of breeding experiments, from the evaluation of 

growth vigor at the seedling stage to the determination of yield and quality at the mature stage. It is an 

indispensable basis for screening high-yield, high-quality and stress-resistant varieties. Traditionally, researchers 

relied on manual measurement to record traits such as the height of cotton plants, the number of fruit branches, the 

number of bolls, and the quality of fibers. However, manual investigation is not only time-consuming and 

labor-intensive, but also prone to subjective biases and environmental disturbances, making it difficult to timely 

and comprehensively reflect the true differences of large group materials. This has made phenotypic data 

gradually become one of the bottlenecks restricting genetic improvement of cotton (Beegum et al., 2024). As 

breeding enters the era of big data, it is of strategic significance to develop highly efficient, objective and accurate 

phenotypic acquisition technologies. The emergence of high-throughput phenotypic analysis (HTP) technology 

has provided a solution to this problem. HTP rapidly monitors multiple traits related to crop growth, yield and 

stress resistance in the field through non-destructive means. 

For a long time, the field phenotypic data of cotton have mainly relied on manual observation and simple 

instrument measurement, such as manual measurement of plant height and bell recording, and laboratory analysis 

of fiber quality, etc. These traditional methods have obvious limitations: (1) Low efficiency: Manual measurement 

consumes a large amount of human and material resources and is difficult to cover large experimental fields in a 
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timely manner; (2) Subjective bias: Inconsistent standards among different investigators, resulting in poor data 

repeatability; (3) Limited spatiotemporal resolution: It is impossible to continuously monitor the growth dynamics 

of plants, and only data at limited time points can be obtained. (4) Single indicators: It is difficult to determine 

complex phenotypes such as canopy temperature and photosynthetic parameters in a timely manner by manual 

methods. With the development of information technology and artificial intelligence, emerging AI-driven 

phenotypic platforms are gradually overcoming these bottlenecks. The advancement of computer vision and 

sensor technology enables us to utilize equipment such as drones and robots to obtain massive amounts of crop 

growth images and environmental data in real time through cameras and various sensors. The rise of AI 

algorithms such as deep learning enables computers to automatically extract plant features from complex image 

data, achieving precise recognition and quantification of traits (Ampatzidis and Partel, 2020). Studies have shown 

that deep learning models such as convolutional neural networks perform exceptionally well in tasks like object 

detection and image segmentation, and have been successfully applied in phenotypic analyses such as plant organ 

recognition and pest and disease detection. In recent years, a number of intelligent platforms for field phenotyping 

have been developed successively at home and abroad, such as unmanned aerial vehicles equipped with 

multispectral cameras, high-throughput phenotyping tractor systems, and field automatic walking phenotyping 

robots, etc. (Ye et al., 2023). These AI-driven platforms can efficiently and objectively obtain a large amount of 

trait data of crops at different growth stages in the field, thereby significantly increasing the data output of field 

trials. 

This study will systematically review the current application status and development trends of AI-driven 

phenotypic analysis in large-scale cotton field experiments, explore its role and prospects in cotton genetic 

breeding and precision agriculture, analyze the technical basis of AI-driven phenotypic analysis, and summarize 

the development of high-throughput phenotypic acquisition platforms. Compare the characteristics and advantages 

of air-based platforms (unmanned aerial vehicles, satellite remote sensing) and ground-based platforms (tractor 

modification systems, field robots), introduce the integrated application schemes of multiple sensors such as 

multispectral, hyperspectral, and thermal imaging in cotton phenotypic monitoring, and focus on the processing 

and analysis of phenotypic data. This paper discusses the extraction of cotton plant structure parameters by image 

segmentation and 3D reconstruction techniques, the monitoring of plant growth dynamics through time series data 

analysis, and how to conduct correlation analysis between phenotypic data and genotypes and environmental 

factors to analyze the genetic mechanism of traits. This study also analyzes the application practice of the AI 

phenotypic platform through actual cases: including large-scale phenotypic monitoring carried out in China's 

cotton-growing areas, the application of AI in field experiments and yield prediction in the United States' 

cotton-growing areas, as well as the performance and challenges encountered by the AI phenotypic platform in 

multi-site joint experiments. Through the above review and analysis, this study hopes to provide a reference for 

related research and promote AI phenotypic technology to better serve the genetic improvement and production 

management of cotton. 

2 Cotton Phenotypic Traits and Field Trial Requirements 

2.1 Major agronomic traits of cotton and their relationship to yield and fiber quality 

The agronomic traits of cotton plants are rich and diverse, among which the most important ones include the 

length of the growth period, plant height, number of fruit branches, number of bolls, single boll weight, coat 

fraction (ratio of lint cotton to seed cotton), and fiber quality indicators (length, specific strength, Micronization 

value, etc.). These traits jointly determine the yield and quality performance of cotton. For instance, plant height 

and branch type affect population structure and light interception efficiency; The number of fruit branches and the 

weight of individual bolls directly determine the total number of bolls per unit area and the yield of individual 

bolls, and they are the key factors in the composition of yield. The fabric fraction reflects the proportion of the 

produced fibers. The length, strength and fineness (Macron value) of the fibers determine the textile quality of 

cotton fibers (Li, 2024). 

In breeding practice, it is often necessary to balance yield and quality. Sometimes, there is a negative correlation 

trend between the two-high-yield varieties may have slightly inferior fiber quality, while high-quality fiber 
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varieties often have lower yields. This makes a deep understanding of the relationships among the main 

agronomic traits particularly important. A large number of genetic statistical studies have revealed the correlation 

patterns among cotton traits. For instance, field experiment analyses of multiple cotton varieties (lines) have 

shown that the yield of lint cotton is significantly positively correlated with yield components such as the number 

of bolls per plant and the weight of each boll, and is often positively correlated with plant height. Taller plants 

usually produce more bolls and have higher yields. Meanwhile, there is a certain correlation between output and 

certain fiber quality characteristics. For instance, materials with higher output may have a moderately higher 

Macron value (an indicator of fiber fineness), but the fiber length may be shorter. Deng et al. (2020) conducted an 

experimental analysis of 63 new early-maturing upland cotton varieties and found that the seed cotton yield was 

extremely significantly positively correlated with the growth period, plant height, number of boll formation, and 

single boll weight, and was also positively correlated with the fiber Macron value and uniformity index. It is 

indicated that moderately extending the growth period, increasing the plant type, the number of knots and the 

weight of individual knots can simultaneously increase the yield and improve the fiber quality to a certain extent. 

On the other hand, environmental conditions have a regulatory effect on the relationship between traits. For 

instance, under conditions of sufficient water and fertilizer, increasing plant height and the number of branches is 

beneficial for enhancing yield. However, in drought or high-density planting, overly tall plants may instead lead to 

lodging and reduced yields. 

2.2 Demand for phenotypic data acquisition in large-scale field trials 

Large-scale field trials of cotton usually involve the planting comparison of numerous varieties (lines) at multiple 

locations and in multiple seasons to assess the high yield, stable yield and adaptability of the materials. The 

characteristic of this type of experiment is that it is extremely large in scale: a single experiment may involve 

hundreds of materials, which are repeatedly planted in different environments. How to obtain detailed and reliable 

phenotypic data on such a large experimental scale is a major challenge facing researchers. First of all, in 

experiments involving hundreds or even thousands of cells, relying on traditional manual measurement is 

obviously not feasible-the human input is huge and difficult to complete in a timely manner, and the data at 

different locations during the same period is also difficult to ensure consistency (Adams et al., 2020). However, 

breeders urgently need comprehensive phenotypic information to discover superior materials and identify genes 

that control traits. Therefore, large-scale trials have put forward an urgent need for efficient acquisition of 

phenotypic data: (1) There is a need for measurement methods that can cover a large area and multiple materials at 

one time, and it is best to complete the data collection of the entire trial in a short time to eliminate the influence 

of environmental diurnal variation; (2) Objective and standardized measurements are needed to enhance the 

consistency of data from different observation personnel at different locations. (3) Multiple repeated 

measurements are required during the growth period to obtain information on the dynamic changes of traits. Only 

by meeting these requirements can the advantages of large-scale experimental design be fully leveraged to screen 

out types with truly outstanding genetic performance from a vast amount of materials, and ensure the credibility 

and stability of the screening results. The emergence of high-throughput phenotypic technology precisely meets 

the above demands. For instance, the unmanned aerial vehicle (UAV) remote sensing platform can obtain the 

canopy images and growth parameters of the entire experimental field in a single flight, enabling a single person 

to acquire data from thousands of plots in a single day and significantly enhancing efficiency. Studies show that 

during the rapid growth stage of cotton, the daily changes in traits such as plant height are significant. It is 

difficult to accurately capture these changes solely relying on manual labor. However, tools like drones can 

achieve high-frequency monitoring and obtain continuous growth curves. Ye et al. (2023) pointed out that during 

the rapid growth period of cotton, the daily growth of plants is very large, and it is "almost unrealistic" to carry out 

large-scale manual measurement. However, unmanned aerial vehicle remote sensing can accurately obtain the 

plant height dynamics of different materials throughout the field. 

2.3 Value of phenotypic big data in cotton breeding and precision cultivation 

In terms of breeding, phenotypic big data provides a prerequisite for analyzing the genetic mechanisms of 

complex quantitative traits. Traditional QTL mapping and association analysis are often limited by the volume and 



 

 

Field Crop 2025, Vol.8, No.3, 139-153 

http://cropscipublisher.com/index.php/fc 

 142 

accuracy of phenotypic data, while high-throughput platforms can provide a larger number of more detailed 

phenotypic determinations, thereby enhancing the statistical power of detecting genetic effects. For instance, by 

integrating big data from multi-point experiments in different environments with genotyping data, it is possible to 

more reliably mine major and minor QTLS and identify key functional genes. Zhao (2019) pointed out that by 

integrating automated platform equipment and information technology means to obtain massive amounts of 

multi-scale, multi-habitat, and multi-source heterogeneous plant phenotypic data, and forming plant phenomics 

big data, the relationship among genotype, phenotype, and environment can be systematically and deeply explored 

from the omics height. This means that phenotypic big data will help us gain a more comprehensive understanding 

of the genetic structure of important quantitative traits in cotton, such as yield and quality, providing clear gene 

targets for molecular breeding. In fact, the breakthroughs in cotton genomics in recent years are closely related to 

the large-scale collection of phenotypic data. By using high-throughput field phenotypic screening combined with 

genome-wide association studies (GWAS), researchers have successfully identified major genes that affect traits 

such as plant height and drought resistance. For instance, Ye et al. (2023) conducted GWAS using multi-time 

series plant height data from drones and located plant height related loci on chromosomes A01 and A11. And the 

candidate genes GhUBP15 and GhCUL1 were identified. These findings provide new molecular tools for 

cultivating ideal plant types, high-yield and stress-resistant cotton varieties. Similarly, in the improvement of fiber 

quality, combining large-scale phenotypic assesses (such as fiber length and strength performance under different 

environments) is also helpful for analyzing the genetic basis of quality traits. 

3 Technical Foundations of AI-Driven Phenotyping 

3.1 Applications of computer vision and deep learning in plant phenotypic recognition 

Computer vision (CV) is a technology that enables computers to "see" pictures and recognize objects. It has 

brought about significant changes in the automatic identification of plant phenotypes. In the past, the analysis of 

plant images mainly relied on manually designed image processing methods, such as setting color thresholds to 

separate green plants from soil, or using shape analysis methods to calculate the area of leaves. These traditional 

methods work quite well when the background is relatively simple and the target is clear, for instance, they can 

quickly obtain the number of plants and the coverage area. However, once in the field environment, where the 

light changes greatly and there are many weeds, these methods are prone to errors. In recent years, deep learning, 

especially convolutional neural networks (CNNS), has developed rapidly, bringing new breakthroughs to 

computer vision. Deep learning models can learn on their own how to recognize objects from a large number of 

images without the need for manual extraction of image features. In terms of plant recognition, CNN models have 

been applied to the detection of seedling plants, the statistics of leaf numbers, and fruit recognition, with an 

accuracy rate much higher than that of traditional methods (Zhang and Wang, 2024). For instance, Yang et al. 

(2025) used a deep learning model to identify diseases of cotton leaves, achieving a classification accuracy rate of 

approximately 98%. In terms of weed detection in cotton fields, deep convolutional networks can also distinguish 

cotton from weeds in complex backgrounds and automatically count and locate them. Deep learning can also be 

used to extract the phenotypic features of cotton organs. For instance, Wu et al. (2022) used images captured by 

drones to generate 3D point clouds, which can accurately extract structural information from cotton fields, such as 

plant height and canopy leaf area index. Convolutional networks can also perform image segmentation, dividing 

each pixel in the image into parts such as leaves, stems or bells, and then calculating the size and shape of each 

organ. 

3.2 Role of machine learning in cotton trait prediction and classification 

In the era of agricultural big data, machine learning (ML) technology has become an important tool for extracting 

patterns from massive phenotypic data, predicting traits and classifying them. Compared with traditional statistical 

regression models, machine learning (especially deep learning) can handle high-dimensional nonlinear data 

relationships and performs well in predicting important traits of cotton. Yield forecasting is one of the most typical 

applications of machine learning in the phenotypic analysis of cotton. Early studies mostly adopted empirical 

regression models (such as multiple linear, stepwise regression, etc.) to predict per-unit yield based on indicators 

such as vegetation index during the growth period, but these models were difficult to fit complex nonlinear 
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relationships. Nowadays, deep learning models that integrate multi-source data have significantly improved 

prediction accuracy. 

Ultimately, AI is not only capable of classifying images; it has indeed done a lot of "serious work" in agriculture. 

Take cotton for example. Want to predict the output? In the past, people relied on experience, but now with deep 

learning, a lot of trouble can be saved. Yang et al. (2025) mentioned that structures like convolutional layers and 

pooling layers can actually automatically extract useful features from complex data without the need for manual 

variable selection at all. Moreover, no matter where the data comes from, whether it is images or sensors, it can 

process them all together. However, this matter is not just about theory. The research also verified this point-when 

CNN models are used in combination with images captured by drones, the average error in plot level yield 

prediction can be controlled within 8%. Some teams have made further attempts, such as using the improved 

version of YOLOv8 to identify cotton bolls and then estimate the yield, with an error rate of only around 7.7%. To 

be honest, this is quite astonishing. Feng et al. (2025) developed a yield estimation method that combines 

multispectral remote sensing and machine learning. So, what was the result? If only one sensor is relied on, the 

effect is just so-so. However, once the visible light, red edge and near-infrared bands are all integrated, the 

prediction accuracy immediately increases. From this perspective, it seems that relying on machine learning to 

"piece together the puzzle" is much more reliable than the traditional method that only uses a single variable. 

Speaking of this, in fact, AI can do something else. It can not only estimate the yield but also categorize and 

"identify cotton". Tools such as support vector machines, random forests, and deep neural networks can be used to 

determine whether a variety is insect-resistant cotton or to identify growth stages such as the seedling stage, bud 

stage, and flowering stage. 

3.3 Multi-modal data fusion and automated feature extraction 

The phenotype of cotton is jointly influenced by genes, environment and planting management. Therefore, to 

understand the phenotype of cotton, it is necessary to combine data from different aspects for examination. 

Multimodal data fusion means analyzing data from various sources and of different types together. For instance, 

information such as images, spectra, meteorology and soil can be combined. This way, the situation of cotton can 

be understood more comprehensively and accurately. In the phenotypic analysis of cotton, multimodal fusion has 

become an important method to improve model performance and discover new problems. Sometimes, the optical 

image of the canopy alone may not be sufficient. For instance, it might not be able to distinguish whether there is 

a lack of nitrogen or water. But if thermal infrared images (which can show the leaf temperature) and soil moisture 

data are added, it will be easier to determine which problem it is. This "1+1>2" effect has been reflected in many 

studies. Wang et al. (2022) have done relevant work. By using images from the Sentinel-2 satellite and combining 

data from multiple time points with meteorological information, they not only improved the accuracy of cotton 

yield prediction but also identified which growth period is most suitable for yield estimation. 

Multimodal data fusion can overcome the limitations of a single data source and provide a more comprehensive 

explanatory power for complex agronomic traits. Ai-driven platforms are naturally suitable for conducting 

multimodal fusion analysis. On the one hand, the development of sensor technology enables us to simultaneously 

obtain multimodal data: for instance, unmanned aerial vehicle (UAV) platforms can be equipped with RGB 

cameras to capture visible light images, multispectral cameras to obtain vegetation indices, hyperspectral imagers 

to obtain fine spectral curves, and thermal imagers to obtain temperature distributions, thereby collecting 

multimodal phenotypes in a single flight. Ground-based phenotype vehicles can also integrate LiDAR and 

imaging sensors to simultaneously obtain three-dimensional structural and spectral information. On the other hand, 

machine learning, especially deep learning models, provides a powerful framework for multimodal data fusion. 

Convolutional neural networks can have multiple branches to handle data of different modalities respectively, and 

then fuse them on high-level features. Models based on the attention mechanism can also automatically learn the 

weights of each modality (Zhang et al., 2024). Multimodal fusion not only enhances the prediction accuracy but 

also provides a new perspective for revealing the relationships between different data sources and traits. 

Automated feature extraction is an important characteristic of AI phenotypic analysis. Traditional analysis often 

relies on manual feature selection, such as choosing specific band ratios as vegetation indices or selecting several 
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major traits based on experience for regression. This kind of manual feature engineering is both time-consuming 

and may miss key information. Deep learning models can automatically learn multi-level features from raw data, 

such as automatically extracting the shape and texture features of disease spots or the spectral features of 

chlorophyll content from leaf images. Especially in multimodal data scenarios, automatic feature extraction has 

more advantages-the model can comprehensively consider various data modalities and extract useful information 

at different scales. For instance, CNN can simultaneously process canopy images of cotton at different heights, 

automatically capturing the growth characteristics of different growth stages through convolutional layers without 

the need to manually define which period or which index is most relevant. 

4 High-Throughput Phenotyping Platforms and Sensor Integration 

4.1 Advantages of UAVs and satellite remote sensing for large-scale cotton phenotyping 

In recent years, unmanned aerial vehicles (UAVs) and satellite remote sensing technologies have been widely 

applied as high-throughput phenotypic data acquisition methods in cotton research. The unmanned aerial vehicle 

(UAV) remote sensing platform has outstanding advantages such as mobility, high resolution and easy operation, 

and is particularly suitable for phenotypic monitoring of cotton in large fields. Firstly, drones can fly at low 

altitudes to obtain canopy images with centimeter-level resolution, clearly presenting details at the level of 

individual plants and even organs, such as leaf color, the number of flowers and the degree of catl release, which 

is much higher than the resolution of satellite images. Studies show that the RGB images of unmanned aerial 

vehicles can accurately extract the structural parameters of cotton plant height by reconstructing three-dimensional 

point clouds, and the correlation with the measured ground height reaches more than 0.95. Psiroukis et al. (2023) 

utilized visible light images from unmanned aerial vehicles (UAVs) to generate digital surface models for 

estimating the height of cotton plants. The results were highly consistent with those measured manually (R² > 

0.90), verifying the accuracy and reliability of UAV measurements. Secondly, unmanned aerial vehicles (UAVs) 

respond quickly and can flexibly adjust flight time and frequency according to demand, thereby achieving 

multi-temporal dynamic monitoring of phenotypic traits. For instance, aerial photography of the experimental 

fields can be conducted every week or even every few days to record the growth curves of cotton and key growth 

turning points, which is difficult to achieve through traditional manual operations. Secondly, the coverage range of 

the unmanned aerial vehicle (UAV) is moderate. A multi-rotor UAV can easily obtain data from dozens to 

hundreds of hectares of experimental fields in a single day, making it particularly suitable for large-scale 

experiments at research sites or breeding bases. 

In contrast, although satellite data has a larger coverage area, it is often limited by spatiotemporal resolution and 

affected by cloudy and rainy weather. However, drones can take off and land at any time on fine days to obtain 

clear images. Practice has proved that in key agronomic links such as cotton defoliation and ripening, unmanned 

aerial vehicle (UAV) monitoring has played an irreplaceable role. Ma et al. (2021) utilized drones equipped with 

RGB cameras to capture images of cotton fields before and after defoliation in mechanical harvesting, and rapidly 

calculated the defoliation rate through vegetation indices, providing an efficient means for evaluating the 

effectiveness of defoliants. The model it established has shortened the manual investigation time from several 

days to just a few minutes, and the monitoring accuracy of the deleafing rate has reached over 90%, greatly 

improving the efficiency of related experiments on mechanical cotton harvesting. Satellite remote sensing has 

unique advantages in large-scale area monitoring and long-term sequence data. Satellite platforms (such as the 

European Sentinel-2 and the US MODIS, etc.) can cover the entire major cotton-producing areas and provide 

regional-scale vegetation growth and yield estimation information. Although satellite images have a relatively low 

resolution (typically 10 m to 30 m), making it difficult to analyze individual plant information, they have a wide 

coverage and a fixed period, making them suitable for macroscopic analysis. 

4.2 Applications of ground-based phenotyping platforms (automated vehicle systems, robotics) 

In addition to aerial platforms, ground-based high-throughput phenotypic platforms are also a current research 

hotspot, offering advantages in precisely capturing plant details and collecting data around the clock. Ground 

platforms mainly include two types: modified high-clearance vehicles (phenotype tractors) and field autonomous 

robots. The automatic vehicle-mounted phenotypic system is usually equipped with a variety of sensors on 
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high-chassis tractors or tracked vehicles, such as high-definition cameras, LiDAR, spectrometers, environmental 

sensors, etc. When the vehicle travels between crop rows, the sensors can scan the plants on both sides at close 

range. Because the vehicle-mounted platform is closer to the plants, the resolution and accuracy of the data 

obtained are often better than those of the aerial platform. For instance, a high-clearance phenotype vehicle 

developed by the United States is equipped with four adjustable robotic arms between cotton rows. Each robotic 

arm is integrated with RGB cameras and LiDAR, enabling it to obtain the three-dimensional structure of the 

cotton canopy and plants from multiple angles at close range. This system can measure traits such as plant height, 

crown width and leaf area index (LAI) throughout the entire growth period without touching the plants, and can 

move among tall stems, not limited by the growth of cotton and the size of the field (Jiang et al., 2018). Some 

vehicle-mounted phenotypic platforms have also been developed domestically. For instance, the cotton phenotypic 

tractor developed by the Nanjing Institute of Agricultural Mechanization can simultaneously collect multi-spectral 

images of the canopy and ultrasonic ranging data, enabling automatic measurement of the height and density of 

rows of plants. This type of platform features independent power supply and all-weather operation, making it 

suitable for regular field data collection Tours. 

The phenotypic robot is equipped with RTK differential GPS, lidar, etc., to achieve precise positioning and 

obstacle avoidance navigation. Because the robot is closer to the plant, it can be equipped with high-precision 

sensors such as microscopic imaging and close-range spectral probes to obtain information at the organ level of 

the crop. For instance, a certain cotton-phenotypic robot abroad uses a mechanical arm to extend into the canopy 

to capture high-resolution images of the leaves, and analyzes the leaf lesions and nutritional status. There are also 

robots installing ground spectrometers at the bottom to measure the spectra intercepted in the lower part of the 

cotton canopy to evaluate the light energy utilization rate of the plants (Sun et al., 2017). Of course, ground 

platforms also have their limitations, such as a smaller coverage area than aerial platforms and possible 

restrictions on movement in muddy fields. However, for experimental fields and breeding nurseries, ground 

platforms offer the close-up observation capabilities required for fine phenotypic measurements. Especially in the 

acquisition of cotton traits such as stem thickness, internode length, and the number of buds and bolls, ground 

platforms are more suitable. 

4.3 Integration of multispectral, hyperspectral, and thermal imaging sensors 

The powerful functions of the high-throughput phenotypic platform cannot do without the "firepower support" of 

various advanced sensors. In response to the different phenotypic characteristics of cotton, the main sensors 

currently integrated into the platform include multispectral cameras, hyperspectral imagers, and thermal infrared 

cameras, etc. Each of them has its own strengths and, when working together, can capture crop information from 

multiple angles. A typical multispectral sensor can simultaneously obtain images in the red, green, blue (visible 

light), red edge, near-infrared and other bands. The vegetation indices calculated thereby (such as NDVI, EVI, etc.) 

are closely related to biomass parameters such as leaf area index and chlorophyll content. For instance, in the 

research on drought resistance of cotton, the use of multispectral unmanned aerial vehicles to obtain vegetation 

indices during the flowering and boll-forming period can quickly estimate the SPAD value and water content of 

the population leaves, providing a basis for screening drought-tolerant varieties. The experiment of Li et al. (2023) 

used 253 cotton varieties as materials. Under normal irrigation and drought stress conditions, the cotton canopy 

images were obtained by DJI Jingling 4 multispectral unmanned aerial vehicle, multiple spectral indices were 

extracted, and a model was established to estimate leaf nitrogen nutrition (SPAD) and water content. The results 

show that the multispectral index has a relatively high prediction accuracy for the key physiological indicators of 

cotton leaves. Multispectral cameras, due to their low cost and simple data processing, are one of the most widely 

used phenotypic sensors at present. They are often used to monitor growth differences, nitrogen nutrition 

diagnosis, and the maturity of catching, etc. 

Hyperspectral cameras can obtain continuous spectra in hundreds of narrow bands from visible light to 

near-infrared and are thus called "spectral lie detectors". Compared with multispectral cameras, hyperspectral 

cameras offer more abundant spectral information and can detect subtle physiological changes in plants. The 

hyperspectral reflectance curve of cotton leaves contains information such as chlorophyll, carotenoids, moisture, 
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and phenology. By analyzing the characteristic bands or spectral indices, the nutritional and stress conditions can 

be evaluated more accurately. For instance, a study by Thorp et al. (2024) deployed a field hyperspectrometer to 

monitor the reflectance of cotton leaves. By combining 148 spectral indices and multiple machine learning 

methods, the chlorophyll content of the leaves was predicted. As a result, the R2 of the best model reached 0.88. 

Hyperspectral remote sensing is also used for the early detection of cotton diseases. 

The temperature of leaves can actually reveal a lot about their "internal conditions". Like thermal infrared cameras, 

they determine whether crops are short of water and how fast they are evaporating by detecting the radiation 

temperature on the surface of the canopy. Generally speaking, when there is less water or the stomata stop opening, 

the temperature of the leaves will rise rapidly. Therefore, the canopy temperature has become an "indicator light" 

for judging the degree of water stress and irrigation requirements of cotton. However, not everyone uses this 

method from the very beginning. Nowadays, it is popular to use drones in combination with thermal imaging 

technology to fly around the fields to see where the temperature is high and there may be a lack of water, and then 

decide whether to replenish water and how much to replenish. In some studies, this method has been used quite 

maturely. O'Shaughnessy et al. (2023) conducted an AI-driven irrigation experiment, where they combined 

thermal imaging with Internet of Things (iot) sensors to optimize the irrigation strategy. The result was also quite 

impressive-20% to 35% of water was saved, but the output did not drop. It seems that water conservation is really 

not something that can be accomplished on a whim. 

5 Applications of AI-driven Phenotyping Platforms in Data Processing and Analysis 

5.1 Image segmentation and extraction of cotton plant structural parameters 

Image segmentation is the process of dividing an image into several regions of interest. In the phenotypic analysis 

of cotton, a typical task is to separate the background soil, weeds and cotton plants, and further divide the plants 

into different organs (leaves, stems, bolls, etc.). The traditional threshold segmentation method is feasible in 

simple backgrounds, but its accuracy is not high when facing complex field backgrounds. Deep learning provides 

more robust semantic segmentation schemes. Networks such as U-Net and Mask R-CNN can learn the shape and 

texture features of cotton leaves and bell shells using artificially labeled training data, and can accurately outline 

the plant contusions and organ regions even in complex backgrounds. For instance, some studies have used Mask 

R-CNN to perform instance segmentation on cotton floss images during the floss opening period, which can 

separate each floss from the background and count it, providing a basis for evaluating the floss opening rate and 

the timing of harvest (Adke et al., 2022). The results of image segmentation can also be used to calculate plant 

type parameters, such as canopy coverage (proportion of green pixels), projected area, etc., as indicators of 

vegetation growth. For the division and identification of high-density plants, deep learning segmentation 

combined with connected domain analysis technology can automatically count the number of seedlings emerging 

in the field and the seedling spacing, which is faster and more accurate than manual counting. 

After the image segmentation is completed and a clean cotton plant image is obtained, some structural parameters 

can be extracted. One of the most common parameters is the plant height. In the past, when measuring the height 

of a plant, a ruler was usually used, measuring from the ground to the top of the plant. This method was relatively 

slow and prone to errors. Nowadays, three-dimensional reconstruction technology can be used to measure the 

height and structural data of the plant without touching it. For instance, after processing the low-altitude images 

captured by drones using the Structure from Motion (SfM) algorithm, high-density point clouds of the 

experimental field can be generated. By subtracting the Digital Ground Model (DEM) from the Digital Surface 

Model (DSM), the average plant height of each plot can be calculated. Another common structural parameter is 

the Leaf Area Index (LAI), which indicates the number of leaf areas per unit of ground. LAI can reflect the growth 

condition of cotton and its ability to absorb light energy. In the past, to measure LAI, it was generally done by 

direct measurement or with instruments (such as LAI-2200). Nowadays, LAI can also be estimated by combining 

AI platforms with remote sensing technology. In the study by Wu et al. (2022), they used a point cloud model 

generated by a drone to not only monitor the changes in cotton plant height but also estimate the LAI after 

defoliation treatment. The research found that three days after the application of defoliant, the R² between the LAI 

estimated by point cloud and the measured value reached 0.872. This indicates that as long as there are 
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high-resolution images combined with three-dimensional information, the changes in leaf area can be dynamically 

tracked. This can be used to judge the defoliation effect or assess the aging condition of the plant. In addition to 

plant height and LAI, the AI platform can also extract some structural information of cotton that is difficult to 

measure by hand. 

5.2 Time-series data analysis and growth dynamics monitoring 

A direct application of time series data analysis is the quantification of growth rates. Traditionally, we have 

roughly understood the early or late maturity of a variety by measuring the traits at several stages such as the 

seedling stage, bud formation stage, flowering stage and catkins stage. Nowadays, it is possible to monitor on a 

daily basis or even at a higher frequency by using drones and ground sensors. For instance, Ye et al. (2023) 

utilized drones to measure the plant height of 320 upland cotton materials at three different locations in a time 

series, obtaining the plant height values of each material at multiple time points. By conducting principal 

component analysis (PCA) on these time series data, they reduced the dimension of the plant height growth curve 

and extracted two main components: the first component represents the average plant height level, and the second 

component reflects the difference in growth rate. The results showed that the materials were classified into 

different types. Some were tall and grew fast as a whole, some were short and grew slowly, and some were of 

medium height but grew rapidly in the early stage and slowed down in the later stage (Figure 1). This analysis 

reveals information that traditional endpoint measurements cannot provide-the growth dynamic patterns of 

different materials. For breeding, this helps to screen out variety combinations that grow fast during the seedling 

stage and stably after flowering, and can also discover some materials with late-blooming advantages (growing 

fast in the later stage and possibly achieving high yields in specific environments). 

Through time series monitoring, we can identify which stages in the growth of cotton are the most critical and also 

see how much impact these stages have on the yield. For instance, if the analysis of NDVI or LAI time series data 

from multiple locations over several consecutive years reveals that a certain stage (such as the initial flowering 

period) has the strongest relationship with yield, it indicates that this stage is of great significance. In breeding and 

field management, special attention should be paid to the growth conditions during this period. In actual 

production, it is often said that the "peach setting period" (that is, the flowering and bell-bearing period) is 

particularly important. This is because this stage determines how many bolls the cotton can produce and how big 

each boll can grow. Now, we can prove this matter with data. If the time series data shows that within two weeks 

after flowering, the LAI of some plots rises rapidly and the final yield is also high, it indicates that the increase in 

leaf area at this stage is very helpful for the yield. In this way, we can, based on this rule, increase the input of 

water and fertilizer during this period to boost the output. This is like installing a "warning system" during the 

growing season. It can tell us whether the cotton is growing well. If it doesn't meet the standards, we can also 

adjust the management methods in time. 

5.3 Association analysis of phenotype, genotype, and environmental factors 

In recent years, with the development of high-throughput genotyping technology, we can obtain whole-genome 

marker information (such as SNPS) of cotton materials, while high-throughput phenotypic platforms provide a 

vast amount of trait data. The combination of the two has given rise to a new paradigm of the integration of 

"phenomics" and "genomics". In terms of genotype-phenotypic association analysis, genome-wide association 

analysis (GWAS) and quantitative trait loci (QTL) mapping are the main approaches. High-quality phenotypic 

data is directly related to the success or failure of association analysis. In the past, due to the large errors and few 

repetitions in artificial phenotypic data, only a few major genes could often be detected. Nowadays, AI phenotypic 

platforms provide more refined and multi-dimensional phenotypic indicators for association analysis, thereby 

enhancing the detection efficiency. 

On the other hand, phenotypic-environmental interaction analysis is crucial for understanding variety adaptability 

and optimizing agricultural management. The phenotypic manifestations of cotton varieties vary in different 

environments, that is, there exists a "G×E interaction". Traditional breeding evaluates the wide adaptability and 

specific adaptability of varieties through multi-point experiments, but it is limited by the single artificial 
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phenotypic indicators and it is difficult to deeply analyze the interaction mechanism. High-throughput phenotypes 

can provide rich trait data from various locations, offering materials for analyzing interactions. For instance, we 

can compare the differences in the sequential growth curves of the same set of materials in experiments in 

southern Xinjiang and central and southern Hebei, identify the types that still have high yields in southern 

Xinjiang but reduced yields in the north, and then analyze the reasons in combination with environmental data 

(temperature, light, etc.). If a certain variety still maintains a high LAI and photosynthetic rate in high-temperature 

areas, while the leaf area of another variety rapidly decreases under high temperatures, it reveals the difference in 

heat tolerance between the two. This kind of analysis can be achieved by combining statistical models (such as 

AMMI models, GGE double-map) with multi-point phenotypic data, or by introducing machine learning to 

predict variety performance based on environmental variables, and then infer the source of interaction effects. For 

instance, Xu et al. (2017) utilized a dual-standard analysis of genotype and trait to optimize the registration 

criteria for cotton varieties. In essence, this was an analysis of the interaction between traits and the environment, 

aiming to identify trait indicators that can both reflect genetic differences and are robust. High-throughput 

phenotypic data will make such analyses more accurate. 

 

Figure 1 Flow chart of this study (Adopted from Ye et al., 2023) 

Image caption: (a) Ground control points (GCPs) marked by red circles were evenly arranged in the trial fields. Each accession had 

about 10-20 plants and was grown in a plot of 3  m × 0.6  m in size. (b) The unmanned aerial vehicle (UAV) remote-sensing platform 

(DJI Phantom4 RTK) was applied in this study to obtain visible images. (c) Ground-truth plant height (PH) of samples and 

coordinates of GCPs were measured by ruler and RTK, respectively. (d) Image processing and PH extraction process. The difference 

between the first and the 95th percentiles was used to extract PH from the on-season digital surface model (DSM) of the plot. (e) 

UAV-based PH was used for GWAS and the associated candidate genes were identified (Adopted from Ye et al., 2023) 
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6 Case Studies: Practical Applications of AI-Driven Cotton Phenotyping Platforms 

6.1 Large-scale phenotyping practices in Chinese cotton regions 

China is a major country in cotton cultivation and scientific research. In recent years, China has made many 

attempts in phenotypic monitoring of large-scale cotton fields. A typical example is the phenotypic identification 

of a large number of cotton germplasm resources in major production areas such as Xinjiang. The ecological 

environment in Xinjiang is rather unique, and it is also rich in cotton resources. However, to find germplasm that 

is both stress-resistant and high-yielding from so many materials, it would be very slow and arduous to use 

traditional methods. To enhance efficiency, researchers have introduced a high-throughput phenotypic platform to 

conduct large-scale and precise field determinations on hundreds of cotton germplasms. For instance, Professor 

Zhang Xianlong's team from Huazhong Agricultural University collaborated with research institutions in Xinjiang 

to conduct high-throughput phenotypic monitoring using drones. They screened over 1 800 cotton hybrid 

offspring materials in terms of plant height, leaf traits, and yield. Through high-frequency remote sensing 

monitoring, they selected 53 cotton materials with particularly strong drought resistance in the fields. Even in the 

case of severe drought, when the irrigation water volume was reduced by 50%, the output of these materials did 

not decline. Next, the research team combined molecular marker analysis and applied these excellent materials in 

breeding, eventually developing new water-saving and drought-resistant varieties like "Jinken 1161". This case 

demonstrates that high-throughput phenotypic technology has played a significant role in the screening of cotton 

resources and stress-resistant breeding in China, and has also greatly accelerated the breeding speed. 

High-throughput phenotypic monitoring has also been carried out at the Nanfan base in Hainan. There are 

numerous plots for the southern breeding and generation increase experiment, which poses a great challenge to 

manual management. The Chinese Academy of Agricultural Sciences has established the National Nanfan Crop 

Phenotyping Center in Sanya, equipped with automated phenotyping carts and unmanned aerial vehicle systems, 

to conduct all-weather monitoring of crops such as cotton and rice in the experimental fields (Zhang et al., 2024). 

It is reported that the ground phenotypic vehicle of the center can automatically tour multiple experimental fields 

every day, monitor the plant height and growth progress of cotton, and can transmit the data to the remote server 

in real time. Breeders can view the growth curves and on-site images of each material through their mobile phones 

or computers, keep abreast of the progress of experiments in a timely manner and detect any abnormal situations. 

This remote digital monitoring model has particularly played a role during the epidemic, enabling breeders who 

were unable to go to the site to "select seedlings remotely". 

6.2 AI-driven field trials and yield prediction applications in U.S. cotton regions 

In the United States, several cotton-growing states have established high-throughput field phenotypic facilities. 

Among them, the most well-known is the USDA (USDA-ARS) Crop Field High-throughput Phenotyping Facility 

located in Maricopa, Arizona. This base is equipped with a large Field Scanalyzer high-throughput automated 

phenotypic frame (mainly used for wheat, etc.), but for cotton, experiments and monitoring are mainly conducted 

using a combination of unmanned aerial vehicles and ground platforms. Thorp et al. (2024) reported a study on 

the assessment of chlorophyll content in cotton leaves using ground hyperspectral and machine learning in the 

Arizona cotton region. They conducted a four-year field experiment in Maricopa, repeatedly measuring the leaf 

reflectance of different cotton varieties using a high spectrometer carried on a handcart, and trained the model 

with the chlorophyll content analyzed in the laboratory as the standard. By comparing 148 spectral indices and 14 

machine learning algorithms, they found that ensemble learning (such as random forest and gradient boosting) 

combined with red-edge band indicators could best predict chlorophyll, with an R² of up to 0.88. However, they 

also found that the model had difficulties in generalization across different years: when trained with 2019-2020 

data and tested in 2021-2022, the prediction performance was poor (R² was only 0.46). This prompt requires 

calibration for environmental differences (Figure 2). 

In terms of production prediction and precision agriculture, a large number of cases of AI application have 

emerged in the cotton-growing areas of the United States. Feng et al. (2022) comprehensively considered soil, 

meteorological and unmanned aerial vehicle remote sensing information and used deep learning to predict cotton 

yield. They set up field trials in Missouri to measure yields under different treatments and collect soil texture, 
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seasonal meteorological data, and mid-growth drone images. By fusing these heterogeneous data through the 

CNN model for training, an accurate prediction of the experimental yield was achieved. The results show that the 

prediction accuracy of the fusion model is significantly higher than that of using only a single data source, 

demonstrating the powerful ability of multi-source AI models in cotton yield prediction. 

 

Figure 2 Summary of measured chlorophyll (Chl) and spectral reflectance data collected from cotton leaves during field studies at 

Maricopa, Arizona, USA, including (A) area-basis Chl, (B) mass-basis Chl, and (C) the minimum, median, and maximum of spectral 

reflectance data from the 2019-2020 experiment and (D) area-basis Chl, (E) mass-basis Chl, and (F) the minimum, median, and 

maximum of spectral reflectance data from the 2021-2022 experiment (Adopted from Thorp et al., 2024) 

6.3 Performance and challenges of AI phenotyping platforms in multi-location trials 

Multi-location Trials are not new. They have always been an important method for evaluating the stability and 

adaptability of cotton varieties. It's just that now with the support of AI, the situation is a bit different. On the one 

hand, AI-driven phenotypic platforms have indeed significantly improved the efficiency of experiments and the 

quality of data. However, on the other hand, not all problems have been solved, and challenges have also emerged. 

Take data acquisition as an example. In the past, during national cotton regional trials, many pilot projects could 

only record a few indicators-yield, quality, and a few basic agronomic traits. Nowadays, some places have 

introduced unmanned aerial vehicle (UAV) monitoring. Not only is the efficiency higher, but the data obtained is 

also more detailed. For instance, the vegetation index and plant height at different time points throughout the 

entire growth period can all be observed. This additional information can precisely help us understand where the 

yield differences among varieties come from. For instance, in the cotton-growing areas of North China, a regional 

trial discovered an interesting phenomenon: the NDVI of two high-yield new varieties at the end of flowering was 

significantly higher than that of the control variety, indicating that their leaves could still function well in the later 

stage and did not decline prematurely. Sure enough, the final result also confirmed this point-not only were the 

single bells of these two materials heavy, but the number of knots was also large. In contrast, for those materials 

with low yields, NDVI drops rapidly after flowering and ages significantly earlier (Gu et al., 2024). 

However, in practice, it has also been found that multi-site trials have brought some challenges to the operation of 

the AI phenotypic platform. The first issue is data standardization. The environmental background, lighting 

conditions and operation methods of different test sites may vary, resulting in systematic deviations in the 
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obtained remote sensing data. The second is the issue of platform adaptability. The field conditions at different test 

sites vary greatly, and there are different requirements for the flight of unmanned aerial vehicles and the operation 

of robots. Third, the challenge of model generalization. When applying machine learning models for prediction in 

multi-point experiments, it is often encountered that the model trained in one environment performs poorly in 

another. Fourth, the pressure of data management and analysis generated by large-scale multi-point trials cannot 

be ignored either. The high-frequency remote sensing data from dozens or even hundreds of pilot projects, when 

collected, form a huge database. To effectively store and manage metadata (such as variety numbers and pilot 

information) and provide it for researchers' use, it is necessary to establish a centralized and unified database 

platform. 

7 Future Prospects 

Looking to the future from the forefront of current technological development, it can be seen that the AI-driven 

cotton phenotypic analysis platform is evolving towards greater intelligence, efficiency and deep integration, 

which will also provide strong support for the development of smart agriculture. Platform devices will be more 

cost-effective, automated and ubiquitous. At present, high-throughput phenotypic devices are relatively expensive 

and have a high usage threshold, which limits their large-scale application in the production field. One of the 

future development trends is cost reduction: with the large-scale production of drones and sensors, their prices will 

continue to decline, and the hardware investment required for AI phenotypic analysis will no longer be prohibitive. 

Moreover, the emergence of more open-source and low-cost components (such as open-source agricultural robot 

projects) will give rise to affordable versions of platforms. The development of new low-cost field intelligent 

phenotypic acquisition and analysis equipment will be a key focus. 

AI analysis algorithms will tend towards higher levels of intelligence and integrated decision-making. At present, 

most AI models operate independently for specific traits or tasks, such as yield prediction and disease detection. 

The future development trend is to build multi-task joint models or digital twin systems to achieve all-round 

simulation and decision support for crop growth. The deep learning model will not only tell us "what state the 

plant is in", but also further answer "what measures need to be taken". The AI phenotypic platform will be deeply 

integrated with genomics, breeding information systems and agricultural machinery operation systems, giving rise 

to a new type of intelligent agricultural ecosystem. In terms of breeding, the synergy of phenomics and genomics 

will accelerate "intelligent breeding". Algorithms trained with phenotypic big data can help breeders eliminate 

inferior materials at an early stage and predict unmeasured environmental performance, thereby improving the 

efficiency of breeding selection. From a macro perspective, the widespread application of AI-driven phenotypic 

platforms will bring about social and economic benefits as well as changes in scientific research paradigms. As an 

important economic crop, the digitalization and intelligence of cotton production will increase the output per unit 

area, reduce resource consumption and environmental pollution, and promote sustainable agricultural 

development. 

Of course, we also need to stay clear-headed. Intelligent technology is not omnipotent, especially in a complex 

field like agriculture, where AI systems sometimes make mistakes or even fail. So, in the future, it will still be 

necessary for humans and machines to work together. AI can handle large amounts of data, while human experts 

make decisions and deal with unexpected situations. For instance, AI can initially offer management suggestions, 

but whether to implement them in the end still depends on the agronomist's decision based on their experience and 

risks. This human-machine combination is very likely to become the mainstream approach in future smart 

agriculture. Although AI is becoming increasingly mature and people will gradually trust its judgments more, 

necessary human monitoring and intervention still cannot be omitted. 
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