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Abstract Cotton is a globally important dual-purpose crop valued for its fiber yield, but both its yield and quality are severely
impacted by a variety of pathogens. This study reviews the genetic architecture of fiber quality traits (such as strength, length, and
fineness) and resistance to major diseases such as Verticillium wilt, Fusarium wilt, and bacterial wilt, focusing on potential genetic
overlap and independence. We explore the methodological framework for multi-trait genome-wide association studies (MT-GWAS),
highlighting statistical models such as multivariate linear mixed models and Bayesian methods, which outperform single-trait
analyses by capturing pleiotropic loci and genetic correlations. We present key findings from cotton MT-GWAS, including the
identification of co-localized QTLs, novel candidate genes, and genotype-by-environment interactions across multiple environmental
datasets. We also highlight the integration of MT-GWAS with transcriptomic, metabolomic, epigenomic, and proteomic data, and the
validation of functional genes using CRISPR, RNAI, and overexpression technologies. A case study demonstrates the practical
application of MT-GWAS in a breeding program targeting fiber quality and disease resistance, enabling genetic validation and
germplasm improvement. While MT-GWAS faces challenges such as population structure, statistical complexity, and translational
gaps, advances in high-resolution phenotyping, pan-genomics, and predictive breeding strategies hold promise for broader
application. This study highlights the potential of MT-GWAS to accelerate cotton improvement by revealing complex trait
architecture and informing integrated breeding processes.
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1 Introduction

Globally, if one were to look for a crop that is extremely important for both the agricultural economy and the
textile industry, cotton (Gossypium spp.) would probably be the most prominent example. It provides over 95% of
the natural fiber output and builds the livelihood foundation for countless farmers and enterprises (Su et al., 2018;
Thyssen et al., 2018). The continuous pursuit of high-quality fibers determines its commercial value and makes its
position in the industrial chain unshakable (Sun et al., 2017). But things are not that simple. During the planting
process, common diseases such as Fusarium wilt and Fusarium wilt often recur, not only affecting the yield but
also directly lowering the quality of fibers, ultimately impacting profits and supply stability.

Although traditional breeding efforts have been considerable, most of them have focused on improving fiber
quality or enhancing disease resistance, with few achievements that balance both (Cheng and Zhang, 2025). One
of the reasons is that the genetic regulatory networks behind these two traits are rather complex, and sometimes
there is a situation of "one rising and the other falling" (Wang et al., 2021). Especially in the context of constantly
changing environments and evolving pathogenic bacteria, the improvement of single traits is becoming
increasingly inadequate. In recent years, multitrait GWAS analysis and QTL mapping techniques have gradually
demonstrated their advantages, beginning to reveal some pleomorphic loci and key candidate genes that not only
affect fiber quality but also participate in disease resistance. This has opened up new ideas for molecular breeding
and also made the practice of marker-assisted selection more targeted.

This study does not intend to focus merely on a single trait. On the contrary, we aim to systematically review the
genetic research progress made over the years in the improvement of the dual traits of "fiber quality + disease
resistance", especially the key achievements from multi-trait GWAS and QTL. In addition, the economic value
and agronomic significance of such research will be briefly discussed to see how upland cotton and island cotton
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perform under different populations, environments and molecular means. It is hoped that it can provide some
valuable references for the future cotton breeding strategies and research directions.

2 Genetic Basis of Fiber Quality and Disease Resistance in Cotton

2.1 Key quantitative traits associated with fiber strength, length, and fineness

When it comes to the quality of cotton, there are several core indicators that cannot be ignored: strength, length
and fineness-especially fineness, which is often measured by the Macron value. Although these traits are also
greatly influenced by the environment, their heritability is actually not low, which also means that there is some
room for breeding improvement. At present, researchers have identified many genetic loci related to these traits
through GWAS and QTL mapping. Even on chromosomes such as Dtl1 and At07, some "hotspots" have been
found, one tending towards length and the other associated with intensity (Said et al., 2013). A more detailed look
shows that genes like Gh_D09G2376 and Gh_D06G1908 in these regions are considered to play a significant role
in the development of fibers (Liu et al., 2020). Of course, relying solely on traditional drawing methods is not
precise enough. The later introduced MAGIC and CSSL groups went a step further by uncovering the hidden gene
interactions, such as which additive interactions or superior effects were influencing fibrous traits (Qi et al., 2024),
thus making the research closer to the actual genetic background.

2.2 Major diseases impacting cotton yield

Yield and quality are often not technical issues but rather diseases that cause trouble first. Diseases like Fusarium
wilt, Fusarium wilt and bacterial wilt have dealt a heavy blow to cotton fields. Among them, the most severe one
might still be fusarium wilt. Not only will the yield decrease, but the fiber quality will also be affected (Wang et
al., 2025). In recent years, researchers have screened out a number of genes related to resistance through GWAS
and transcriptome methods, such as resistance sites like qVW-A01-2, as well as candidate genes like GhAMT2
and GhGT-3b_A04 (Figure 1). The mechanisms involved are not complicated either. It mainly focuses on lignin
synthesis, salicylic acid signaling pathway and reactive oxygen species regulation (Mao et al., 2023). Both upland
cotton and sea island cotton have actually made considerable efforts in this regard, especially in the selection of
appropriate alleles or the introduction of dominant fragments from disease-resistant resources. Breeders have been
making attempts (Li et al., 2023a). Although the process was not easy, the improvement in disease resistance has
indeed shown initial results in some varieties.

2.3 Genetic overlap and independence between fiber and resistance traits

It is indeed not easy to achieve both disease resistance and fiber quality. Their genetic regulation is neither
completely independent nor completely overlapping. In other words, some gene loci act on both traits, while
others act on only one (Li et al., 2023b). For instance, in some regions of the D subgenome, there are both QTLS
that improve fiber and signals that regulate wilt resistance, which shows the possibility of "balancing both ends"
(Ma et al., 2021). However, real breeding cases also show that sometimes improving one trait can drag down
another, such as chain burdens or genetic trade-offs, which are hard to avoid. Nowadays, multi-trait GWAS and
integrated genome technologies are gradually beginning to identify key genes or chromosomal regions that have
the potential to achieve bitrait improvement. This provides a new idea for cultivating cotton that is both
high-quality and disease-resistant in the future. Ultimately, however, how these overlapping areas can achieve
their maximum effectiveness still depends on further in-depth research.

3 Principles of Multi-Trait Genome-Wide Association Studies (MT-GWAS)

3.1 Differences between single-trait GWAS and MT-GWAS methodologies

Previous GWAS studies basically focused on only one trait at a time. Although this approach is intuitive, it is
prone to missing some genes that play a role in multiple traits (Turley et al., 2018). Especially when dealing with
complex traits influenced by multiple factors, the requirement for sample size becomes very high. Later, it was
discovered that in fact many traits are genetically related. MT-GWAS was developed on this basis. It will analyze
multiple related traits together and utilize the genetic correlations among them to enhance detection ability
(Yoshida and Yanez, 2020). By this method, not only can the loci that were "missed by single trait GWAS" be
identified, but also the common genetic mechanisms behind multiple traits can be revealed. However, not all traits
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are suitable for mixed analysis-provided that there must be a certain genetic correlation among these traits;
otherwise, the advantages of MT-GWAS cannot be brought into play.

3.2 Statistical models used in MT-GWAS

MT-GWAS not only has to deal with multiple traits but also has to confront a vast amount of genotype data, so the
statistical models behind it must be more powerful. At present, the most widely used model is the multilinear
mixed model (mvLMM), because it can consider both fixed effects and random effects simultaneously, and also
handle population structure problems and the relationships between traits (Lozano et al., 2023). Some researchers
prefer Bayesian methods, such as Bayesian LASSO and EM-Bayesian LASSO. These models are more flexible in
variable screening and suitable for high-dimensional data, especially in cases where the trait structure is relatively
complex (Tamba et al., 2017; Wen et al., 2018). In recent years, some new models have been proposed, such as
regularized versions of multi-trait hybrid models and multi-locus models. They have further enhanced
computational efficiency and improved detection performance in certain scenarios.
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Figure 1 Functional Analysis of GhAMT2 in enhancing resistance to Verticillium Wilt in Cotton and Arabidopsis. (a) Relative
transcript levels of GhAMT?2 in TRV-VIGS cotton leaves for TRV: EV (empty vector) and TRV: GhAMT?2 plants, with GhActin
serving as the internal reference gene. Expression levels were normalized to “1” for TRV: EV; (b) Silencing of GhAMT?2 reduces
cotton resistance to Verticillium dahliae, as evidenced by increased disease symptoms on TRV: GhAMT?2 plants compared to TRV: EV
plants 25 days post-infection; (c) Statistical analysis of the disease index in Gh4AMT2-silenced plants, showing a significant increase
compared to controls; (d) Relative biomass of V. dahliae in TRV: GhAMT2 and TRV: EV plants, illustrating higher pathogen
colonization in GhAMT2-silenced plants; (¢) GhAMT2 promotes the expression of lignin metabolism-related genes in cotton.
Expression analysis of lignin biosynthesis genes showed upregulation in the presence of GhAMT2; (f) Identification of transgenic
Arabidopsis plants overexpressing GhAMT?2. Semi-quantitative RT-PCR analysis demonstrates GhAMT2 mRNA levels in three
transgenic lines compared to WT (Col-0); (g) Overexpression of GhAMT?2 enhances Arabidopsis tolerance to Verticillium dahliae, as
evidenced by reduced disease symptoms in transgenic lines compared to WT; (h) Statistical analysis of the disease index in WT and
OE-GhAMT? Arabidopsis plants, showing significantly lower disease indices in transgenic lines. *, 0.01< P <0.05; **, P < 0.01; ***,
P <0.001 (Adopted from Wang et al., 2025)

3.3 Advantages of MT-GWAS in revealing pleiotropic loci and genetic correlations
Compared with the traditional single-trait GWAS, the benefits of MT-GWAS are obvious. As long as there is a
moderate or higher genetic correlation among the analyzed traits, this method can often detect the related genes
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more easily (Guo et al., 2024). It is particularly good at identifying the pleiotropic loci where "one gene affects
multiple traits simultaneously", which is an important entry point for understanding the common genetic basis of
complex traits (Sahito et al., 2024). Not only that, MT-GWAS can also quantify the genetic relationships among
different traits, thereby providing clues for subsequent breeding directions, such as which traits can be improved
together and which may conflict with each other. However, it should also be noted that it is, after all, just one of
the tools. Whether to adopt it or not still depends on the research objective and the characteristics of the trait itself.

4 Key Discoveries in Multi-Trait GWAS for Cotton

4.1 Identification of pleiotropic QTLs controlling both fiber traits and disease resistance

Some genetic loci seem to control more than one aspect. Past multi-trait GWAS and multi-environment analyses
have shown that there are many QTLS that can simultaneously regulate multiple fiber quality traits (such as length,
strength, and fineness) and yield traits (Gowda et al., 2024). Some of them are even linked to production factors
such as the weight of the bells, the proportion of the clothes, and the number of bells-indicating that these areas
have a strong sense of "taking into account". Interestingly, these QTLS have been repeatedly detected in multiple
environments, and this "stability" is highly practical for breeders (Su et al., 2020). Although most current studies
focus more on the two traits of yield and fiber, it can still be observed that some QTLS are also associated with
disease resistance. In other words, this kind of genetic overlap may become a breakthrough point for
"simultaneous improvement of dual traits". However, it should also be noted that these QTLS do not perform
consistently in all environments, and some effects are also related to conditions. This point cannot be ignored.

4.2 Novel candidate genes uncovered through MT-GWAS and their functional annotations

Not all candidate genes can be easily identified by traditional methods, especially those whose functions are
"hidden behind multiple traits". Using methods such as MT-GWAS, researchers screened out some candidate
genes that play a key role in fiber development and yield expression. Genes such as GH_D06G2161, which begin
to be expressed in the early ovulate stage, and Ghir_D11G020400, which encodes MATE exovation protein and is
related to fiber elongation, are both regarded as relatively core regulators (Wang et al., 2022). Functional
annotations and transcriptome data provide more context, indicating that most of these genes are involved in cell
wall synthesis, signal transduction, and developmental processes directly linked to fibrogenesis (Li et al., 2020).
These new discoveries may not be immediately applicable, but they undoubtedly provide many new targets for
marker-assisted selection and subsequent biotechnological interventions.

4.3 Insights into genotype-by-environment interactions from multi-environment studies

Just because a gene is stable in the laboratory doesn't mean it works equally well in the field. The research results
of multi-environment GWAS remind us that the expression of QTL and candidate genes is actually greatly
influenced by the environment, and sometimes this influence is quite "jumping" (Zhu et al., 2021). Some sites are
very stable, and the effect is quite consistent no matter where they are planted. However, there are also many
QTLS that only show obvious signs in certain regions or years, which makes it necessary to pay attention to the
interaction between genes and the environment. For instance, for some loci related to fiber quality, the test results
will completely change when the location is changed or the year is changed. This also explains why in the
breeding process, making decisions based solely on data from a certain location may not be sufficient.
Multi-environment verification is not an option but a necessary prerequisite.

5 Integration with Other Omics and Functional Genomics

5.1 Combining MT-GWAS with transcriptomics and metabolomics for gene prioritization

It's hard to tell which gene is truly the "key player" just by relying on GWAS. At this point, if the results of
MT-GWAS are combined with the data of transcriptome and metabolome, it will be clearer to determine which
candidate genes are worth giving priority to. For instance, if a certain gene is not only genetically related to fiber
quality or disease resistance, but also active in transcriptional expression and even involved in a certain metabolic
pathway, then it is not "merely related", but "may actually be involved" (Sanches et al., 2024). Through
co-expression analysis, metabolic pathway enrichment, and network-based integration methods, researchers can
identify truly functional genes from multiple perspectives, not just the "possibilities" in a statistical sense.
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Although this method is a bit troublesome, it is much more reliable than relying solely on GWAS. Integrating
multi-omics is not merely for the sake of good-looking data, but for more accurately selecting targets and
biomarkers that can be used for breeding.

5.2 Validation of candidate genes using CRISPR, RNAIi, and overexpression studies

Discovering the candidate gene is only the first step; verification is the key. Whether it's the quality of the fibers or
their disease resistance, guessing is of no use. It depends on what the experiments say. Gene editing technologies
like CRISPR/Cas9, or methods such as RNA interference (RNAi) and gene overexpression, are the "toolboxes"
for verification. By knocking out, silencing or enhancing the expression of specific genes, researchers can see
whether these genes are involved in certain biological processes, such as fiber development or disease resistance
response (Yang et al., 2021). This kind of verification not only confirms the function of genes, but also turns
"correlation" into "causality". To put it bluntly, it's about letting experiments help us put those ambiguous gene
loci into practice and truly turn them into practical achievements for breeding.

5.3 Epigenomic and proteomic contributions to trait expression

Not all trait differences can be answered from DNA variations. Sometimes, epigenetic modifications and protein
changes are the key. For instance, epigenetic regulations such as DNA methylation or histone modification adjust
gene expression in response to environmental changes. Sometimes, the impact of such regulation on disease
resistance or fiber quality is even more significant than that of the sequence itself (Morabito et al., 2025).
Proteomics, on the other hand, approaches it from a different perspective-it does not focus on how much gene is
expressed, but rather on how the final product (protein) performs, whether modification occurs, and whether there
is interaction. If this information can be integrated and analyzed together with MT-GWAS, the genetics,
epigenetics and protein regulation that affect cotton traits can be pieced together into a more complete map at the
"system level". This step is indispensable for understanding the formation mechanism of complex traits.

6 Case Study

6.1 Case overview: a breeding program targeting both superior fiber and wilt resistance

When it comes to the true application of MT-GWAS in breeding, the domestic Gossypium barbadense project is a
typical example. However, the initial difficulty of this project lies in the fact that there is more than one goal: not
only to improve the quality of fibers, such as the indicators of length, strength and fabric fraction, but also to
enhance the resistance to Fuswilt disease. Once this disease breaks out, it will have a great impact on both yield
and quality. Traditional methods are often inefficient in dealing with such complex targets. The strategy adopted
by this project is to first conduct large-scale resequencing and phenotypic analysis of different germplasms, and
then further explore the genetic patterns on this basis. Ultimately, it is about identifying the genes behind complex
traits and clarifying the relationships.

6.2 Deployment of MT-GWAS to detect co-localized QTLs for fiber and disease traits

There are actually quite a few traits analyzed in this project-a total of 15, including those related to fibers, diseases,
and yield traits. The final screened gene loci were most related to fiber quality, followed by disease resistance and
yield (Figure 2) (Zhao et al., 2022). One of the key breakthroughs is that MT-GWAS helped discover those
"co-localized QTLS" that have an impact on multiple traits, meaning that the same gene region may
simultaneously be responsible for both fiber and disease resistance. Such multi-potency loci are easily overlooked
in traditional single-trait analysis. More importantly, some genes are not determined solely by statistics.
Researchers also used gene expression data and transgenic verification methods (such as VIGS) to gradually
"confirm" the functions of these candidate genes.

6.3 Outcomes: candidate genes validated, germplasm selected, and yield improvements observed

The final outcome of this breeding project is also quite clear: five key candidate genes have been functionally
verified, involving not just a single trait, but multiple aspects such as disease resistance, fiber length, strength and
garment size. With these achievements, subsequent lineage selection and marker-assisted breeding will have a
"clear coordinate". The newly bred germplasm not only meets the fiber quality standards but also has significantly
stronger disease resistance than before. The more practical benefit is that the output has gradually increased, and
the overall breeding effect is closer to the market and agronomic demands.
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Figure 2 Identification of the FL causal gene GhFL2 on chromosome At05. (a) Manhattan plot for FL. The dashed line represents the
significance threshold (-logl0P =6). Effect values of genetic markers were tested using F tests and corrected for multiple testing
using Bonferroni correction. (b) Local Manhattan plot (top) and LD heatmap (bottom) surrounding the peak on At05. The dashed line
represents the significance threshold (-logl0P=35). Red arrows mark the position of the nonsynonymous SNP A05 16286973 in
Gbar A05G017500 (GbFL?2). Red dotted lines show the candidate region. (c¢) Structure of GHFL2. Blue and yellow rectangles mark
UTR and CDS respectively. (d) Box plot for FL, based on the haplotypes of the two SNPs. In the box plots, the centre line indicates
the median. Box limits are the upper and lower quartiles, and whiskers mark the range of the data; n denotes the number of
accessions with the same genotype. We used a two-tailed #-test to perform the significance analysis. (e) Haplotype distribution in
diverse geographical regions and subpopulations. The bar chart on the left shows the number of two haplotypes in distinct countries.
The map in the middle displays the ratio of two haplotypes in the different provinces of China. The column diagrams below represent
the number of two haplotypes in different subpopulations. (f) Expression of GhFL2 in long-fibre accession XH58 (haplotype T) and
short-fibre accession Ashi (haplotype G) at the fibre developmental stages (0, 5, 10, 15, 20, 25 DPA), detected by RNA-seq (FPKM
value). Data are average values with standard deviation (n=3 varieties with three technical repeats). Single (*), double (**) and
triple (***) asterisks mark statistical significance levels of P <0.05, 0.01 and 0.001 respectively. (g) qRT-PCR analysis of GhFL2
expression in wild-type (WT), transgenic lines with empty VIGS vector (pCLCrVA) and target gene GhFL2 (pCLCrVA-FL2) of
long-fibre (L) accession XH58 and short-fibre (S) accession Ashi. The gene expression level in the long-fibre accession wild type
(L_WT) was set to 1. GbUBQ? is an internal control. (h) Fibre length (mm) of WT, pCLCrVA, (pCLCrVA-FL2 of long-fibre (L)
accession XHS8 and short-fibre (S) accession Ashi. (i) VIGS phenotypes of GbhFL2. (j) The evolutionary origin of GbFL2
(Gbar_A05G017500). We built unrooted trees using the maximum-likelihood method in MEGA7, based on complete CDS sequences.
(k) Selection analysis on homologous CDS sequences of GhFL2. Homologous sequence in each cotton species is represented by its
genome name on the left side of the circle. The difference value (Ka-Ks) of each group of homologous comparisons is indicated by
coloured rectangles according to the colour bar in the upper left corner. While Ka/Ks is generally used as an indicator of selective
pressure, the presence of ‘Ks=0" here precludes this; therefore, we chose another indicator, that is ‘Ka-Ks’ value. Two types of
selection effects, purifying selection (in red) and positive selection (in blue), are shown on the right side of the circle (Adopted from
Zhao et al., 2022)
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7 Challenges and Limitations in Multi-Trait GWAS Applications

7.1 Population structure, environmental noise, and phenotype accuracy

When analyzed by MT-GWAS, the interference brought by the population structure is often more serious than
expected. Especially when the sample itself is unbalanced, population stratification is prone to false positives,
especially for data of non-European ancestry or mixed groups, the probability of error is even higher (Troubat et
al., 2024). On the other hand, the environment is not an easy factor either. Even a slight fluctuation in climate or
human error in field experiments may cause the measurement of traits to deviate from the right direction.
Especially in crop research, environmental effects sometimes even outweigh genetic signals, making the
estimation of heritability less accurate (Zhang et al., 2019). It would be best if phenotypic data could be accurate
and uniform across different environments and groups. However, in practice, it often encounters limitations in
terms of resources, human resources and technology, making it difficult to truly achieve large-scale
implementation.

7.2 Statistical limitations: power, computational complexity, and false discovery rate

Theoretically speaking, MT-GWAS can indeed detect signals more easily than the single-trait method. However,
the problem lies in that it is overly data-dependent-the correlation between traits, the genetic background of the
population, and the sample size-if these variables do not cooperate properly, the detection capability will
immediately decline (Suzuki et al., 2024). To find small effect sites or pleiotropic regions, the sample size needs to
be astonishingly large. However, in actual crop research, samples of this scale are not common. Moreover, once
the number of traits and SNPS is too large, the pressure on model calculation also increases accordingly.
Multicollinearity often makes the results difficult to interpret and may also slow down the analysis efficiency
(Porter and O 'Reilly, 2017). Let's talk about multiple tests. Although corrections like Bonferroni are rigorous, they
can also easily "overfilter out” some genuine signals. Especially when the experimental error is large, how to
balance the detection efficacy and control false positives has become a dilemma.

7.3 Translational gaps between discovery and deployment in breeding programs

Even if you identify a bunch of loci, there might not be that many that can actually be put to use. This is a
common gap in MT-GWAS applications. Some sites have inherently small effects or are highly sensitive to the
environment, resulting in unstable performance in the field. As a result, marker-assisted selection is unlikely to
have practical significance. Another rather awkward aspect is that many candidate genes lack functional
verification. The combination with other omics data is also often absent (Zhu and Luo, 2024). As a result, you
have statistical associations but cannot quickly turn them into practical tools (Khatiwada et al., 2023). Traits
themselves are complex enough. Coupled with the interaction between genes and the environment, even beneficial
alleles may have vastly different expression results in different locations and years. Therefore, this transformation
from "discovery" to "usability" remains the most challenging nut to crack in current breeding.

8 Future Directions and Concluding Remarks

Whether MT-GWAS can truly play a greater role in the future ultimately depends on whether the phenotypic data
can keep up. Manual measurement alone is no longer sufficient. Technologies such as high-throughput imaging,
remote sensing, and automated sensors are increasingly being used to collect field traits-not only are they highly
efficient, but they also minimize human errors and enhance the accuracy of the data. However, data alone is not
enough. If there is no appropriate algorithm to parse, no matter how much data there is, it will just be piled up.
Nowadays, some studies have begun to attempt to incorporate deep learning and artificial intelligence methods to
explore the non-linear relationships between traits that are not so easily detectable. This is very helpful for
identifying QTLS with small effects and complex genetic backgrounds.

Returning to the genomic level, the traditional approach of only looking at a single reference genome has become
increasingly difficult to meet the demands. Pan-genome and haplotype analyses are increasingly being adopted by
more people. They can not only reveal previously overlooked structural variations and rare alleles, but also enable
more precise localization, especially for those variations related to pleiotropic traits. Especially in some
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germplasm resources with relatively high diversity, the "supplementary information" provided by these methods
may change the way the entire genetic map is understood. That is to say, what was invisible before might be due
to the fact that the tools we used were too limited.

Another direction worth noting is to directly feed the results of MT-GWAS into the genomic selection (GS)
process. This is actually like adding a "multi-trait brain" to predictive breeding. By integrating the identified
pleiotropic loci and the genetic correlations between traits, the breeding model can optimize multiple objectives at
once-such as taking into account fiber quality, disease resistance and yield. Once such models are established,
both the breeding efficiency and the speed of genetic gain will be significantly enhanced. Moreover, this is also
expected to shorten the "gap" between gene discovery and practical application.
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