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Abstract Cotton is a globally significant cash crop, but breeding efforts are often challenged by the complexity of achieving both 

high yield and superior fiber quality. This study explores the integration of quantitative trait loci (QTL) mapping and genomic 

selection (GS) as advanced tools to improve cotton breeding efficiency. We reviewed the principles and applications of QTL mapping 

for dissecting complex yield- and fiber-related traits, and assessed its limitations such as environmental interactions and low 

resolution. Genomic selection was examined in terms of predictive models, implementation in breeding pipelines, and advantages 

over traditional methods. A synergistic approach combining QTL mapping with GS was proposed to enhance selection accuracy and 

genetic gain, with emphasis on key traits such as boll number, fiber strength, and drought tolerance. We also discussed technological 

advancements including high-throughput phenotyping, SNP arrays, and machine learning for data analysis. A case study in Upland 

cotton demonstrated successful integration of QTL and GS, resulting in 15-20% gains in yield and fiber quality. Despite challenges 

such as genotype-by-environment interactions and model limitations, this study underscores the potential of integrative, 

genomics-driven strategies to sustainably advance cotton improvement programs. 
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1 Introduction 

Cotton is the most common natural fiber crop in the world and an important raw material for the textile industry. 

Its production feeds millions of people in the world. Because of its wide planting range and many uses in industry 

and agriculture, its economic value is very large. Therefore, how to improve cotton yield and fiber quality has 

always been a key issue for breeders and producers (Zhang et al., 2019b; Li et al., 2022). 

However, it is not easy to improve both yield and fiber quality at the same time. This is because the genetic 

structure of cotton is relatively complex, and the two traits of yield and quality often affect each other. Sometimes, 

if one is improved, the other will decrease. In addition, the genetic diversity of cultivated cotton is not large, and 

the traits are affected by many genes and environmental factors, so it is difficult to make breakthroughs using 

traditional breeding methods. Now, people need new varieties that can produce high yields, provide good fiber, 

and adapt to changes more than ever before (Diouf et al., 2018; Yang et al., 2022). 

In recent years, advances in molecular genetics have brought new tools to breeding, such as quantitative trait loci 

(QTL) mapping and genomic selection. These methods can help us better understand the genetic basis of cotton 

traits. By constructing high-density genetic maps and conducting genome-wide association studies (GWAS), 

researchers have found some stable QTLs and candidate genes related to yield and fiber quality. These results 

have promoted marker-assisted selection (MAS), making breeding more efficient. These methods allow breeders 

to focus on specific gene regions for improvement and integrate good genes from different germplasm resources 

(including interspecific hybrids) to improve cotton yield and quality (Li et al., 2016; Liu et al., 2018; Zhang et al., 

2019a; Lu et al., 2022). 

The purpose of this study is to summarize the recent progress in improving cotton yield and fiber quality through 

QTL mapping and genomic selection. We synthesize recent research results and focus on several key gene regions, 
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candidate genes, and specific breeding methods, especially those strategies that can improve both traits together. 

The application of genomic tools in actual breeding programs has very good prospects and is expected to break 

the traditional problem of "you can't have your cake and eat it too" and achieve a win-win situation and 

continuous improvement in yield and quality. 

2 Quantitative Trait Loci (QTL) Mapping in Cotton 

2.1 Fundamentals of QTL mapping and its role in dissecting complex traits 

In cotton breeding, traits such as yield and fiber quality are simple to say, but they involve many genes and 

complex environmental factors. One gene alone cannot explain too many problems. Scientists usually build a 

genetic map first, which is made up of many molecular markers. Why do they do this? Because this way they can 

find out which gene regions are related to the target traits step by step. QTL positioning is a method that comes in 

handy in this process. It is actually a genetic analysis method used to locate gene regions that affect specific traits. 

Of course, it is not a panacea, but when faced with complex traits, this tool is indeed much better than traditional 

methods (Sun et al., 2012). 

2.2 Key yield- and fiber-related QTLs identified in diverse cotton populations 

Many researchers have found QTLs related to yield and fiber in different cotton varieties and planting 

environments. These QTLs are stable and have obvious effects on traits. For example, a study used a high-density 

genetic map to find more than 100 QTLs related to fiber quality, some of which were found multiple times in 

different generations and environments, indicating that they are reliable (Jia et al., 2024). Chromosome regions 

such as A7, D8 and C7 are "hotspots" for fiber length, strength and yield, and have been highlighted (Jamshed et 

al., 2016). Some QTL regions affect both yield and fiber quality, but their effects may be in opposite directions, 

indicating that there is a certain contradiction and balance between these traits (Figure 1) (Zhang et al., 2019b). 

QTLs that are stable in different environments are particularly suitable for marker-assisted selection and are of 

great value for breeding. 

 

Figure 1 Detailed information about the QTLs and QTL clusters. (a) The position of the QTLs on the consensus genetic map. (b) The 

distribution of the stable QTLs for the six traits on the 26 chromosomes. (c) The position of QTL clusters on the consensus genetic 

map of At. (d) The position of QTL clusters on the consensus genetic map of Dt. (e) The number of two-pair-trait QTL clusters with 

the same and different direction for additive effect (Adopted from Zhang et al., 2019b) 
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2.3 Limitations of QTL mapping, including environmental interactions and resolution 

Although QTL mapping has many advantages, it also has some disadvantages. For example, its resolution may not 

be high, which is related to the number of materials and population types you use. If there are not enough samples, 

the QTL region found may be relatively large, containing many genes, and it is difficult to say which one is 

working (Zhang et al., 2016). In addition, the environment has a great influence on QTL. Some QTLs are obvious 

in one place, but the effect is different in another place or year (Shen et al., 2007). Only a small number of QTLs 

can be stably expressed in various environments, so it is difficult to find stable QTLs that can be used in breeding. 

In addition, traits such as yield and fiber quality are often affected by multiple genes together, and their effects 

will interfere with each other, which makes the application of QTL in actual breeding more complicated (Wu et al., 

2022). 

3 Genomic Selection: Principles and Implementation 

3.1 Theoretical basis and advantages over traditional selection methods 

In the matter of breeding, everyone hopes to select good varieties faster, but the traditional method is slow and 

relies on trait performance, which is observed from generation to generation. Later, genetic marker-assisted 

selection was introduced, but it only focuses on a few "key genes". But the problem is that not all traits are 

determined by a few genes. For complex traits such as yield and stress resistance, there are many genes behind 

them that play a role at the same time, and even each gene does not contribute much. At this time, genomic 

selection (GS) becomes more appropriate. It does not "pick the key points" like the traditional method, but takes 

into account the markers of the entire genome, which is more comprehensive. Moreover, it can predict which 

individuals have potential without measuring phenotypes (Goddard and Hayes, 2007). Using GS for selection is 

more efficient and accurate - especially when facing traits that do not have a single "dominant gene", traditional 

methods are often unable to cope with it (Meuwissen et al., 2016). 

3.2 Models and statistical approaches in genomic prediction 

To use GS, you have to build a model. But you can't just build it casually, you have to be able to handle massive 

amounts of genomic data. Several common models now, such as GBLUP, Bayesian models, and machine learning 

methods, actually have the same purpose - to predict the breeding value of an individual based on the marker 

information of the whole genome (Wang et al., 2018). However, the actual operation may be more complicated 

than you think. A common problem is that there are too many markers, but not enough phenotypic data. This 

imbalance will affect the accuracy of modeling. To compensate, some models will also consider non-additive 

effects, interactions between genes and the environment, or multiple traits together (Larkin et al., 2019). Of course, 

whether the effect is good or not depends on whether the model you choose is appropriate, the population 

structure, the density of markers, and the strength of the trait heritability itself (Robertsen et al., 2019). It doesn't 

mean that everything will be fine if GS is used, but the details must be coordinated. 

3.3 Integration into breeding pipelines for rapid genetic gain 

Integrating GS methods into the breeding process allows us to select good lines earlier and more accurately, so 

that the time and cost of breeding excellent varieties will be much less. GS can be used at every stage of breeding, 

whether it is early selection or later verification, and is especially suitable for those traits that are expensive or 

difficult to measure (Crossa et al., 2017). If a dynamically updated training population is used, the prediction 

model is optimized regularly, and other new technologies, such as high-throughput phenotyping technology, are 

combined, the entire breeding efficiency will become higher and the genetic gain will be greater (Bassi et al., 

2016). Therefore, GS is changing the way modern breeding is done and providing new means for the changing 

needs of agriculture (Voss-Fels et al., 2018). 

4 Combining QTL Mapping and Genomic Selection 

4.1 Marker-assisted selection guided by major QTLs 

Marker-assisted selection (MAS) is a method of guiding breeding based on the located major effect QTL. It can 

help select genes that are beneficial to yield and fiber quality into target varieties (Cao et al., 2024). Breeders can 

find plants with ideal traits by selecting molecular markers that are closely linked to these important QTLs. This 
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not only speeds up the breeding process, but also reduces the work of a large number of phenotyping tests (Li and 

Sillanpää, 2012). However, the effectiveness of MAS mainly depends on the accuracy of QTL positioning and 

whether these QTLs can be stably expressed under different environments. 

4.2 Enhancing genomic prediction accuracy using known QTLs 

When doing genomic selection, adding known QTLs to the model as fixed effects or priority markers can make 

the prediction results more accurate, especially for those traits where the main effect QTL can explain a large part 

of the phenotypic differences (Kemper et al., 2015). Studies have found that if these QTL markers related to the 

target traits are used instead of randomly selected markers from the whole genome, the prediction effect will be 

better (Chen et al., 2022). Because these specific markers are more representative of the real genetic differences. 

In addition, using some multivariate statistical methods or Bayesian models, QTLs with multiple effects can also 

be used at the same time to improve the prediction accuracy of multiple related traits. 

4.3 Strategies to incorporate both tools into cotton improvement programs 

To combine QTL mapping and genomic selection, some supporting strategies need to be adopted. First, QTL 

mapping can be used to identify key genetic loci, and then these loci can be given priority when making genomic 

predictions, which can improve the accuracy and efficiency of predictions (Lan et al., 2020). Second, linkage 

mapping and association mapping can be combined. This method can better narrow the scope of QTL and help 

find important candidate genes, thereby improving their application value in actual breeding (Daware et al., 2020). 

In addition, multivariate analysis and Bayesian methods are also very useful. These models can predict multiple 

traits at the same time and can also take advantage of the pleiotropy of genes and their commonalities (Kemper et 

al., 2018). Finally, the breeding process needs to be constantly updated. New QTL data and the latest phenotypic 

information can be added regularly to adjust the training population and model so that the prediction effect can 

continue to keep up with environmental and genetic changes and maintain good genetic gain. 

5 Traits Targeted for Improvement 

5.1 Yield components: boll weight, number of bolls, and lint percentage 

Whether a cotton variety produces a lot or not depends on how many bolls it has on a plant, how many bolls there 

are, how heavy each boll is, and what the lint percentage is. These are not new problems, and the older generation 

of breeders have been thinking about them for a long time. Traditional breeding methods are still in use, of course, 

but there are more tools now than before. For example, now we can use genotyping technology, combined with 

gene editing methods, to directly target key sites related to these traits (Singh et al., 2020). We don't have to look 

at the performance of each plant, we can also judge which plant has potential. To put it bluntly, this method helps 

breeders save time and improve efficiency, and the goal is also very direct-select varieties with higher yields. 

5.2 Fiber quality traits: length, strength, micronaire, and uniformity 

Whether cotton can be sold in the market depends not only on the amount of production, but also on the fiber 

quality. Textile mills are very concerned about indicators such as length, strength, and micronaire. If the 

uniformity is not good, there may be a problem with the machine. These traits are actually more difficult to 

change than yields - because there are many details and high requirements. However, in recent years, genomics 

has made rapid progress, and breeders can locate the genes that control these traits more quickly. Take 

CRISPR/Cas for example, it can specifically modify a specific gene without touching other parts (Sedeek et al., 

2019). If operated properly, the two goals of yield and quality can actually be achieved at the same time. 

5.3 Agronomic resilience: drought tolerance, pest resistance, and maturity timing 

Whether cotton is easy to grow is not just about whether it can produce high yields. Some places are dry, some 

places are prone to pests and diseases, and some places take too long to mature and cannot be harvested in time. 

These problems are complex and simple at the same time - the key is whether there is a way to take into account 

multiple traits at the same time. The climate has changed, and the environment is not as stable as before, and 

cotton must keep up. At this time, genomics and new technologies come in handy. Scientists will use whole 

genome screening to pick out genes that can help plants "take on things" (Li et al., 2024). The final variety must 

be the type that can survive, grow, and produce fruits in all kinds of land. 
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6 Technological Advances Supporting QTL and Genomic Approaches 

6.1 High-throughput phenotyping platforms for precise trait evaluation 

In recent years, technological developments have driven the emergence of high-throughput phenotyping platforms. 

This platform can quickly and accurately measure many agronomic traits on a large scale. It usually combines 

advanced imaging technology and various sensors to more clearly evaluate complex traits such as yield and fiber 

quality. By providing stable and reliable phenotypic data, these platforms also make genetic analysis more 

efficient, helping breeders better perform QTL positioning and genomic selection (Singh et al., 2022). 

6.2 Next-generation sequencing and high-density SNP arrays 

Not all genes are easy to find. The genetic markers behind some traits are very deep, especially in the QTL region 

or even in the details of a gene - it was difficult to figure out in the past. Until the emergence of next-generation 

sequencing technology (NGS), the situation changed. This technology can do a lot of things, such as constructing 

a very detailed genetic map, or directly locating very close molecular markers (Jaganathan et al., 2020). Of course, 

NGS alone is not enough. High-density SNP chips and whole-genome sequencing methods have also been added 

to improve the resolution of QTL positioning and speed up gene discovery (Kumar et al., 2017). With these tools, 

researchers can perform genotyping in large populations, which is very helpful for QTL analysis and genomic 

selection of cotton and even other crops (Nguyen et al., 2019). 

6.3 Bioinformatics tools and machine learning in data integration 

Nowadays, we have more and more genomic and phenotypic data. In order to integrate and analyze these data 

clearly, advanced bioinformatics tools and machine learning methods must be used. The improvement of 

computer technology has also brought better statistical models and algorithms, which can process large amounts 

of data, make gene positioning more accurate, and also improve the effect of genomic prediction (Altaf et al., 

2024). Machine learning is widely used to integrate multiple omics data, narrow the scope of QTL, and predict the 

performance of complex traits, which is very helpful for QTL positioning and genomic selection in crop 

improvement. 

7 Case Study: Enhancing Yield and Fiber Quality in Upland Cotton 

7.1 Overview of a breeding program combining QTL mapping and genomic selection 

Recently, some upland cotton breeding programs have combined QTL mapping and genomic selection (GS) to 

successfully improve lint yield and fiber quality. These programs usually first construct genetic maps using 

high-density SNPs and perform genome-wide association studies (GWAS) to identify QTLs associated with major 

traits. Then, molecular markers and GS models are used to screen for superior genotypes (Figure 2). For example, 

multi-parent hybrid populations and recombinant inbred lines are often genotyped with markers linked to QTLs 

associated with fiber length, fiber strength, boll weight, and lint percentage. This can bring favorable alleles 

together and reduce the negative impact between yield and quality (Zhang et al., 2019a). 

7.2 Key results 

In the years of cotton improvement, QTLs that can stably control yield and fiber traits are rare. But some of the 

ones that have been verified do play a key role. For example, one study combined several outstanding loci - FL5, 

FL3, FL2 (these affect fiber quality) and BW1, LP1 (related to yield). The performance after the merger is very 

impressive: fiber length increased by more than 10%, strength increased by 17%, and lint percentage also 

improved (Zhao et al., 2024). However, not every study has such neat data. Some work has also discovered a 

larger number of QTLs. For example, a study identified 106 QTLs related to yield and quality, of which 46 can 

explain more than 10% of trait differences alone. After picking out those stable ones as the priority targets in the 

model, the screening efficiency of GS has been significantly improved. Moreover, more than once, researchers 

have noticed that some QTLs have "pleiotropy" - that is, they affect multiple traits at the same time. If we can find 

this gene and combine it with high-quality germplasm materials, improving both yield and quality will no longer 

be an "impossible triangle". 

7.3 Impact 

It used to be said that yield and fiber quality are in a tug-of-war, and it is difficult to balance them. But this is not 

unsolvable, it just depends on whether there are means. Through the combination of QTL positioning and genomic 
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selection, some people have indeed done it. A batch of upland cotton varieties were selected under this strategy. 

By aggregating key gene loci, they finally showed that the yield and fiber quality were 15%-20% higher than the 

old varieties (Wang et al., 2021). This was difficult to achieve in the past, after all, the two traits always have a 

sense of "constraining each other". Now, technical means have broken through this hurdle, not only providing 

breeders with a clear operation path, but also allowing the cotton industry to take a big step towards "high 

efficiency and stable production". 

 

Figure 2 Phylogenetic relationships of 316 cotton accessions: (a) A neighbor-joining tree was constructed using whole-genome SNP 

data. The accessions were divided into three groups, group-1 (red), group-2 (cyan) and group-3 (blue); (b) Population structure of 

cotton accessions. The cotton samples were divided into three groups when k = 3; (c) Geographic origin of the three groups, Central 

Asia (CA), the United States (US), the Yellow River (YR), the Yangtze River (YZR) and other places (OTH); (d) Phenotype 

distributions of yield and fiber quality traits, the group divided by the structure of the 316 accessions, Boll weight (BW), Seed index 

(SI), Lint PC (LP), Fiber length (FL), Fiber strength (FS) and Flowering data (FD). Within boxplots, the bold line represents the 

median, box edges represent upper and lower quantiles, and whiskers are 1.5 times the quantile of the data. Outliers are shown as 

open dots (*P < 0.05, **P < 0.01 and ***P < 0.001, two-sided t-test). The neighbor-joining tree (a) was constructed using the 

software PHYLIP (v3.696, https://evolution.genetics.washington.edu/phylip.html). Population structure of cotton accessions (b) was 

determined using the software Admixture (v1.30, http://dalexander.github.io/admixture/index.html). The others were created by the 

software GraphPad Prism 9 (ver. 9.0.0, http://www.graphpad.com) (Adopted from Wang et al., 2021) 

8 Challenges and Future Prospects 

8.1 Managing genotype-by-environment interactions in predictive breeding 

It is not uncommon for the same cotton plant to grow differently in different fields. The problem is that it is 

difficult for breeders to predict its performance. Especially when genotype and environment are mixed together, 

https://evolution.genetics.washington.edu/phylip.html
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the variation of traits can be unexpectedly large. Whether it is QTL positioning or genomic selection, they are 

reliable in theory, but once the environment changes, the model may not work. Therefore, G×E interaction is an 

unavoidable hurdle. To solve it, the experimental design must be more detailed, and multi-environment testing is 

indispensable. Another point is that environmental data cannot be only put in the report, but must be included in 

the model. Otherwise, the selected materials may fail to perform well in a different planting area. 

8.2 Need for multi-trait and multi-environment prediction models 

Early prediction models were actually quite "simple" - one model for each trait, one model for each environment. 

But the reality is much more complicated than that. The breeding goal now is to "superimpose multiple traits", and 

environmental fluctuations are getting bigger and bigger. If we still follow the old method, the selected varieties 

may be good in one aspect, but poor in another. So what is needed now is a model that can look at multiple traits 

at the same time and take environmental changes into account. In this way, it is possible to take into account yield, 

quality, and stress resistance, and it is possible to select cotton varieties that perform stably in different regions 

and years. This is not to say that the model can solve everything, but it is indeed closer to actual needs than 

previous methods. 

8.3 Prospects for integrating gene editing with marker-based breeding 

In the future, cotton can be improved by combining gene editing technology (such as CRISPR/Cas) with 

molecular marker breeding methods. Gene editing can precisely modify key genes found through QTL mapping 

and genomic selection, so that varieties with ideal traits can be cultivated more quickly. Combining these two 

methods may break through the current bottleneck of trait improvement, combine useful genes more quickly, and 

better cope with the challenges brought by complex genetic structure and environmental changes. 

Acknowledgments 

We would like to thank the anonymous peer review for their critical comments and revising suggestion. 

Conflict of Interest Disclosure 

The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a 

potential conflict of interest. 

References 

Altaf M., Tatar M., Ali A., Liaqat W., Mortazvi P., Kayıhan C., Ölmez F., Nadeem M., Javed J., Gou J., Wang M., Umar U., Dasgan H., Kurt C., Yıldız M., 

Mansoor S., Dababat A., Çeliktaş N., and Baloch F., 2024, Advancements in QTL mapping and GWAS application in plant improvement, Turkish Journal 

of Botany, 48(7): 376-426. 

https://doi.org/10.55730/1300-008x.2824 

Bassi F., Bentley A., Charmet G., Ortiz R., and Crossa J., 2016, Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.), Plant 

Science, 242: 23-36. 

https://doi.org/10.1016/j.plantsci.2015.08.021 

Cao D., Xue Y.G., Tang X.F., Sun J.Q., Luan X.Y., Liu Q., Zhu Z.F., He W.J., and Liu X.L., 2024, Identification and application of yield-related QTLs in 

soybean based on GWAS, Molecular Plant Breeding, 15(6): 371-378. 

http://dx.doi.org/10.5376/mpb.2024.15.0035 

Chen Z., Klingberg A., Hallingbäck H., and Wu H., 2022, Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce, BMC 

Genomics, 24(1): 147. 

https://doi.org/10.1186/s12864-023-09250-3 

Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., De Los Campos G., Burgueño J., González-Camacho J., Pérez-Elizalde S., Beyene 

Y., Dreisigacker S., Singh R., Zhang X., Gowda M., Roorkiwal M., Rutkoski J., and Varshney R., 2017, Genomic selection in plant breeding: methods, 

models, and perspectives, Trends in Plant Science, 22(11): 961-975. 

https://doi.org/10.1016/j.tplants.2017.08.011 

Daware A., Parida S., and Tyagi A., 2020, Integrated genomic strategies for cereal genetic enhancement: combining QTL and association mapping, In: Cereal 

genomics: methods in molecular biology, 2072: 15-25. 

https://doi.org/10.1007/978-1-4939-9865-4_3 

Diouf L., Magwanga R., Gong W., He S., Pan Z., Jia Y., Kirungu J., and Du X., 2018, QTL mapping of fiber quality and yield-related traits in an intra-specific 

upland cotton using genotype by sequencing (GBS), International Journal of Molecular Sciences, 19(2): 441. 

https://doi.org/10.3390/ijms19020441 

Goddard M., and Hayes B., 2007, Genomic selection, Journal of Animal Breeding and Genetics, 124(6): 323-330. 

https://doi.org/10.1111/J.1439-0388.2007.00702.X 

https://doi.org/10.55730/1300-008x.2824
https://doi.org/10.1016/j.plantsci.2015.08.021
http://dx.doi.org/10.5376/mpb.2024.15.0035
https://doi.org/10.1186/s12864-023-09250-3
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1007/978-1-4939-9865-4_3
https://doi.org/10.3390/ijms19020441
https://doi.org/10.1111/J.1439-0388.2007.00702.X


 

 

Cotton Genomics and Genetics 2025, Vol.16, No.3, 117-125 

http://cropscipublisher.com/index.php/cgg 

 124 

Jaganathan D., Bohra A., Thudi M., and Varshney R., 2020, Fine mapping and gene cloning in the post-NGS era: advances and prospects, Theoretical and 

Applied Genetics, 133(5): 1791-1810. 

https://doi.org/10.1007/s00122-020-03560-w 

Jamshed M., Jia F., Gong J., Palanga K., Shi Y., Li J., Shang H., Liu A., Chen T., Zhang Z., Cai J., Ge Q., Liu Z., Lu Q., Deng X., Tan Y., Rashid H., Hassan M., 

Sarfraz Z., Gong W., and Yuan Y., 2016, Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in 

Gossypium hirsutum recombinant inbred line population, BMC Genomics, 17(1): 197. 

https://doi.org/10.1186/s12864-016-2560-2 

Jia X., Zhao H., Zhu J., Wang S., Li M., and Wang G., 2024, Quantitative trait loci mapping and candidate gene analysis for fiber quality traits in upland cotton, 

Agronomy, 14(8): 1719. 

https://doi.org/10.3390/agronomy14081719 

Kemper K., Bowman P., Hayes B., Visscher P., and Goddard M., 2018, A multi-trait Bayesian method for mapping QTL and genomic prediction, Genetics 

Selection Evolution, 50(1): 10. 

https://doi.org/10.1186/s12711-018-0377-y 

Kemper K., Reich C., Bowman P., Jagt C., Chamberlain A., Mason B., Hayes B., and Goddard M., 2015, Improved precision of QTL mapping using a nonlinear 

Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions, Genetics Selection Evolution, 47(1): 29. 

https://doi.org/10.1186/s12711-014-0074-4 

Kumar J., Gupta D., Gupta S., Dubey S., Gupta P., and Kumar S., 2017, Quantitative trait loci from identification to exploitation for crop improvement, Plant 

Cell Reports, 36(8): 1187-1213. 

https://doi.org/10.1007/s00299-017-2127-y 

Lan S., Zheng C., Hauck K., McCausland M., Duguid S., Booker H., Cloutier S., and You F., 2020, Genomic prediction accuracy of seven breeding selection 

traits improved by QTL identification in flax, International Journal of Molecular Sciences, 21(5): 1577. 

https://doi.org/10.3390/ijms21051577 

Larkin D., Lozada D., and Mason R., 2019, Genomic selection-considerations for successful implementation in wheat breeding programs, Agronomy, 9(9): 479. 

https://doi.org/10.3390/AGRONOMY9090479 

Li B., Sun C., Li J., and Gao C., 2024, Targeted genome-modification tools and their advanced applications in crop breeding, Nature Reviews Genetics, 25(9): 

603-622. 

https://doi.org/10.1038/s41576-024-00720-2 

Li C., Dong Y., Zhao T., Li L., Li C., Yu E., Mei L., Daud M., He Q., Chen J., and Zhu S., 2016, Genome-wide SNP linkage mapping and QTL analysis for fiber 

quality and yield traits in the upland cotton recombinant inbred lines population, Frontiers in Plant Science, 7: 1356. 

https://doi.org/10.3389/fpls.2016.01356 

Li Y., Mo T., Ran L., Zeng J., Wang C., Liang A., Dai Y., Wu Y., Zhong Z., and Xiao Y., 2022, Genome resequencing-based high-density genetic map and QTL 

detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum), Molecular Genetics and Genomics, 297(1): 199-212. 

https://doi.org/10.1007/s00438-021-01848-0 

Li Z., and Sillanpää M., 2012, Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection, Theoretical and 

Applied Genetics, 125(3): 419-435. 

https://doi.org/10.1007/s00122-012-1892-9 

Liu R., Gong J., Xiao X., Zhang Z., Li J., Liu A., Lu Q., Shang H., Shi Y., Ge Q., Iqbal M., Deng X., Li S., Pan J., Duan L., Zhang Q., Jiang X., Zou X., Hafeez 

A., Chen Q., Geng H., Gon, W., and Yuan Y., 2018, GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton 

using enriched high-density SNP markers, Frontiers in Plant Science, 9: 1067. 

https://doi.org/10.3389/fpls.2018.01067 

Lu Q., Li P., Yang R., Xiao X., Li Z., Wu Q., Gong J., Ge Q., Liu A., Du S., Wang J., Shi Y., and Yuan Y., 2022, QTL mapping and candidate gene prediction for 

fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments, Molecular Genetics and 

Genomics, 297(2): 287-301. 

https://doi.org/10.1007/s00438-021-01833-7 

Meuwissen T., Hayes B., and Goddard M., 2016, Genomic selection: a paradigm shift in animal breeding, Animal Frontiers, 6(1): 6-14. 

https://doi.org/10.2527/AF.2016-0002 

Nguyen K., Grondin A., Courtois B., and Gantet P., 2019, Next-generation sequencing accelerates crop gene discovery, Trends in Plant Science, 24(3): 263-274. 

https://doi.org/10.1016/j.tplants.2018.11.008 

Robertsen C., Hjortshøj R., and Janss L., 2019, Genomic selection in cereal breeding, Agronomy, 9(2): 95. 

https://doi.org/10.3390/AGRONOMY9020095 

Sedeek K., Mahas A., and Mahfouz M., 2019, Plant genome engineering for targeted improvement of crop traits, Frontiers in Plant Science, 10: 114. 

https://doi.org/10.3389/fpls.2019.00114 

Shen X., Guo W., Lu Q., Zhu X., Yuan Y., and Zhang T., 2007, Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in 

Upland cotton, Euphytica, 155(3): 371-380. 

https://doi.org/10.1007/s10681-006-9338-6 

Singh R., Kumar K., Bharadwaj C., and Verma P., 2022, Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to 

divulge phenotype governing genes, Planta, 255(2): 46. 

https://doi.org/10.1007/s00425-022-03827-0 

https://doi.org/10.1007/s00122-020-03560-w
https://doi.org/10.1186/s12864-016-2560-2
https://doi.org/10.3390/agronomy14081719
https://doi.org/10.1186/s12711-018-0377-y
https://doi.org/10.1186/s12711-014-0074-4
https://doi.org/10.1007/s00299-017-2127-y
https://doi.org/10.3390/ijms21051577
https://doi.org/10.3390/AGRONOMY9090479
https://doi.org/10.1038/s41576-024-00720-2
https://doi.org/10.3389/fpls.2016.01356
https://doi.org/10.1007/s00438-021-01848-0
https://doi.org/10.1007/s00122-012-1892-9
https://doi.org/10.3389/fpls.2018.01067
https://doi.org/10.1007/s00438-021-01833-7
https://doi.org/10.2527/AF.2016-0002
https://doi.org/10.1016/j.tplants.2018.11.008
https://doi.org/10.3390/AGRONOMY9020095
https://doi.org/10.3389/fpls.2019.00114
https://doi.org/10.1007/s10681-006-9338-6
https://doi.org/10.1007/s00425-022-03827-0


 

 

Cotton Genomics and Genetics 2025, Vol.16, No.3, 117-125 

http://cropscipublisher.com/index.php/cgg 

 125 

Singh R., Prasad A., Muthamilarasan M., Parida S., and Prasad M., 2020, Breeding and biotechnological interventions for trait improvement: status and 

prospects, Planta, 252(4): 54. 

https://doi.org/10.1007/s00425-020-03465-4 

Sun F., Zhang J., Wang S., Gong W., Shi Y., Liu A., Li J., Gong J., Shang H., and Yuan Y., 2012, QTL mapping for fiber quality traits across multiple 

generations and environments in upland cotton, Molecular Breeding, 30(1): 569-582. 

https://doi.org/10.1007/s11032-011-9645-z 

Voss-Fels K., Cooper M., and Hayes B., 2018, Accelerating crop genetic gains with genomic selection, Theoretical and Applied Genetics, 132(3): 669-686. 

https://doi.org/10.1007/s00122-018-3270-8 

Wang P., He S., Sun G., Pan Z., Sun J., Geng X., Peng Z., Gong W., Wang L., Pang B., Jia Y., and Du X., 2021, Favorable pleiotropic loci for fiber yield and 

quality in upland cotton (Gossypium hirsutum), Scientific Reports, 11(1): 15935. 

https://doi.org/10.1038/s41598-021-95629-9 

Wang X., Xu Y., Hu Z., and Xu C., 2018, Genomic selection methods for crop improvement: current status and prospects, The Crop Journal, 6(4): 330-340. 

https://doi.org/10.1016/J.CJ.2018.03.001 

Wu J., Mao L., Tao J., Wang X., Zhang H., Xin M., Shang Y., Zhang Y., Zhang G., Zhao Z., Wang Y., Cui M., Wei L., Song X., and Sun X., 2022, Dynamic 

quantitative trait loci mapping for plant height in recombinant inbred line population of upland cotton, Frontiers in Plant Science, 13: 914140. 

https://doi.org/10.3389/fpls.2022.914140 

Yang P., Sun X., Liu X., Wang W., Hao Y., Chen L., Liu J., He H., Zhang T., Bao W., Tang Y., He X., Ji M., Guo K., Liu D., Teng Z., Liu D., Zhang J., and 

Zhang Z., 2022, Identification of candidate genes for lint percentage and fiber quality through QTL mapping and transcriptome analysis in an allotetraploid 

interspecific cotton CSSLs population, Frontiers in Plant Science, 13: 882051. 

https://doi.org/10.3389/fpls.2022.882051 

Zhang K., Kuraparthy V., Fang H., Zhu L., Sood S., and Jones D., 2019a, High-density linkage map construction and QTL analyses for fiber quality, yield and 

morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.), BMC Genomics, 20(1): 889. 

https://doi.org/10.1186/s12864-019-6214-z 

Zhang Z., Li J., Jamshed M., Shi Y., Liu A., Gong J., Wang S., Zhang J., Sun F., Jia F., Ge Q., Fan L., Zhang Z., Pan J., Fan S., Wang Y., Lu Q., Liu R., Deng X., 

Zou X., Jiang X., Liu P., Li P., Iqbal M., Zhang C., Zou J., Chen H., Tian Q., Jia X., Wang B., Ai N., Feng G., Wang Y., Hong M., Li S., Lian W., Wu B., 

Hua J., Zhang C., Huang J., Xu A., Shang H., Gong W., and Yuan Y., 2019b, Genome‐wide quantitative trait loci reveal the genetic basis of cotton fibre 

quality and yield‐related traits in a Gossypium hirsutum recombinant inbred line population, Plant Biotechnology Journal, 18(1): 239-253. 

https://doi.org/10.1111/pbi.13191 

Zhang Z., Shang H., Shi Y., Huang L., Li J., Ge Q., Gong J., Liu A., Chen T., Wang D., Wang Y., Palanga K., Muhammad J., Li W., Lu Q., Deng X., Tan Y., 

Song W., Cai J., Li P., Rashid H., Gong W., and Yuan Y., 2016, Construction of a high-density genetic map by specific locus amplified fragment 

sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.), BMC Plant 

Biology, 16(1): 79. 

https://doi.org/10.1186/s12870-016-0741-4 

Zhao Y., Chen B., Li H., Wang J., Jia Y., Pan Z., Hu D., Peng Z., Li Y., Gao X., Zhang P., Wang L., Peng J., He S., and Du X., 2024, Pyramiding effects of 

favorable haplotypes of loci on major fiber yield and quality traits in upland cotton (Gossypium hirsutum L.), Industrial Crops and Products, 217: 118805. 

https://doi.org/10.1016/j.indcrop.2024.118805 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/s00425-020-03465-4
https://doi.org/10.1007/s11032-011-9645-z
https://doi.org/10.1007/s00122-018-3270-8
https://doi.org/10.1038/s41598-021-95629-9
https://doi.org/10.1016/J.CJ.2018.03.001
https://doi.org/10.3389/fpls.2022.914140
https://doi.org/10.3389/fpls.2022.882051
https://doi.org/10.1186/s12864-019-6214-z
https://doi.org/10.1111/pbi.13191
https://doi.org/10.1186/s12870-016-0741-4
https://doi.org/10.1016/j.indcrop.2024.118805

