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Abstract Cotton is an important economic crop related to the national economy and people's livelihood, but traditional breeding
faces challenges such as long cycle, low efficiency and difficulty in improving yield and quality simultaneously. As a new technology
of molecular breeding, genomic selection (GS) improves breeding accuracy and efficiency by utilizing whole genome marker
information, and shows great potential in crop breeding. In recent years, the rapid development of artificial intelligence (AI)
technology has injected new impetus into agricultural breeding. The application of machine learning and deep learning to crop
genome big data analysis is expected to accelerate the breeding process of crops such as cotton. This study reviews the current status
and challenges of cotton breeding, the basic principles of genomic prediction breeding, and the application progress of artificial
intelligence algorithms in cotton breeding. The research progress of genomic prediction of major cotton traits such as yield, stress
resistance and fiber quality is discussed in detail. Typical cases in Australia, the United States and China are cited to analyze the
practice of cotton intelligent breeding. The current challenges in data quality and model generalization ability, multi-omics data
integration, model interpretability, etc. are analyzed, and the future development direction of the integration of artificial intelligence
and genomic prediction is prospected. This study hopes to break through the bottleneck of traditional breeding, improve the
efficiency and accuracy of cotton breeding, and cultivate new varieties with high yield, high quality and multi-resistance.
Keywords Cotton breeding; Genomic selection; Phenotypic prediction; Deep learning; Intelligent breeding

1 Introduction

Cotton (Gossypium hirsutum Linn.) is one of the most important natural fiber crops in the world, and it is also an
important cash crop and textile industry raw material in my country. Its yield and quality directly affect the textile
industry and farmers' income. After years of development, cotton breeding has made remarkable progress,
especially after the promotion of insect-resistant transgenic cotton, my country has become the second major
country after the United States to have transgenic cotton varieties with independent intellectual property rights.
However, cotton breeding still faces many challenges. Traditional breeding mainly relies on phenotypic selection
and experience accumulation, with a long breeding cycle and low efficiency, and it is difficult to respond to new
challenges of climate change and pests and diseases in a timely manner. At the same time, cotton yield and fiber
quality are often negatively correlated, and it is extremely difficult to maintain or improve quality while increasing
yield. For example, in the past, it was difficult to take into account both fiber length and strength in breeding,
which once became a technical bottleneck. Conventional breeding has limited improvement in soil salinity,
drought and other adversity resistance, and cotton production is still deeply affected by drought, salinity and
disease. These factors have led to severe challenges in my country's high-quality and high-yield cotton breeding,
which requires new technical means to break through (Sun et al., 2022).

The development of molecular breeding has provided new ideas for cotton breeding. Genomic selection (GS) was
proposed by Meuwissen et al. in 2001. It has developed significantly in the past two decades and has been verified
in crops such as wheat and corn to improve selection accuracy and accelerate the breeding process. GS predicts
individual breeding values by weighted estimation of high-density markers across the whole genome, overcoming
the limitation of traditional marker-assisted selection that only uses a few major QTLs, and has shown great
potential in improving crop yield, stress resistance and quality (Budhlakoti et al., 2018; 2022). With the decline in
the cost of high-throughput sequencing and genotyping, cotton genome sequencing and variation map
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construction have been rapidly advanced, providing a data basis for the implementation of GS. In particular, the
high-quality reference genome and pan-genome mapping of cotton completed in recent years have helped to
discover key genes that control important traits such as yield and quality. On this basis, the rise of artificial
intelligence technology has given breeding wings. Machine learning and deep learning methods can automatically
extract complex patterns from massive multi-omics data for trait prediction and decision support. This makes it
possible for crop breeding to shift from experience-driven to data-driven. For example, intelligent breeding
systems that integrate genetic genotype, environment and phenotypic big data have emerged in some studies,
which can accurately predict offspring traits, screen excellent genes and improve breeding efficiency in the early
stages of breeding (Yan and Wang, 2022). It can be foreseen that the combination of artificial intelligence and
genomic technology will lead the future "breeding 5.0" era and accelerate the cultivation of new crop varieties that
meet future needs (Wu et al., 2024).

This study focuses on "Al-assisted cotton genomic prediction breeding", sorts out the basic principles and
application status of genomic selection in cotton breeding, as well as the practical application and research
progress of Al algorithms such as machine learning and deep learning in cotton breeding, introduces the
background status and technical needs of cotton breeding, and explains the concept and methodological basis of
genomic prediction breeding, including genotype data acquisition, genetic variation analysis and prediction model
establishment. It focuses on reviewing the research progress of artificial intelligence methods (such as random
forests, support vector machines, neural networks, etc.) in the prediction of important cotton traits (yield, stress
resistance and fiber quality). Through cases such as Australia's CSIRO breeding program, the US public breeding
project and China's intelligent breeding practice, the actual application effect of Al in cotton breeding is analyzed,
and suggestions for promoting cotton intelligent breeding are put forward. This study hopes to provide useful
references for scientific researchers and breeders, and accelerate the cultivation of new high-yield, high-quality
and stress-resistant cotton varieties. This is of great significance for ensuring the supply of textile raw materials,
improving the competitiveness of the cotton industry and the sustainable development of agriculture.

2 Basic Principles of Genomic Prediction in Cotton

2.1 Concepts of genomic selection and phenotypic prediction

Genomic selection is a breeding method that uses genome-wide molecular markers to predict the genetic potential
of individuals. Unlike traditional breeding that relies on measured phenotypes, GS builds a prediction model by
estimating marker effects in a training population, and directly predicts the genetic breeding value of candidate
individuals that have not been phenotyped, thereby accelerating the selection process (Viana et al., 2016). The
core of GS is to capture the genetic control information of quantitative traits using a large number of SNP markers
across the genome. As long as the molecular marker coverage is dense enough, even if the effect of a single
marker is small, the accumulation of thousands of markers can accurately predict complex traits. This strategy of
"pre-selecting phenotypes with genomes" is regarded as a key step in modern crop breeding, which can improve
selection accuracy, shorten generation cycles, and increase genetic gain. In cotton, GS is particularly suitable for
breeding of typical quantitative traits such as yield, fiber quality, and stress resistance. It is reported that the
prediction accuracy of GS for cotton fiber length and strength can reach a high level of 0.65-0.76, showing an
effect superior to traditional phenotypic selection. Phenotypic prediction is the goal of GS, that is, to predict the
phenotypic performance or breeding value of an individual through genotypic data. In addition to classic statistical
methods such as GBLUP (genomic best linear unbiased prediction), machine learning algorithms have also been
gradually applied to GS models in recent years to improve prediction accuracy (Billings et al., 2022).

2.2 Acquisition and quality control of genotypic data

The premise for implementing genomic predictive breeding is high-quality genotypic data. The cotton genome is
large (2n=4x=52) and highly repetitive, but the development of sequencing technology in recent years has made
high-density typing possible. Commonly used genotype acquisition methods include SNP chips and resequencing.
For example, the US CSIRO breeding project constructed a high-density chip containing 12 296 polymorphic SNP
sites and genotyped 1 385 cotton materials. With the reduction of high-throughput sequencing costs, whole
genome resequencing has become increasingly popular in cotton, and millions of marker variants can be detected
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at one time (Sun et al., 2022). However, strict quality control (QC) is crucial for both chips and sequencing data.
Common QC steps include: removing markers with high missing and error rates, filtering low allele frequency
(MAF) markers to reduce background noise, and removing samples with abnormal heterozygosity or duplicate
identity. High-quality data can ensure the reliability of model training. It is reported that in cotton GS research,
only thousands to tens of thousands of SNPs with high quality are usually selected for modeling. It is also
necessary to pay attention to the impact of homologous fragments and structural variations unique to polyploid
cotton on typing. The recently constructed cotton genome variation database (CottonGVD) integrates a large
amount of SNP, Indel and structural variation information of different cotton species. Using these resources,
breeders can obtain the genotype of the target material more comprehensively. In essence, the quality of genotype
data will directly affect the accuracy of the prediction model. Only by conducting strict QC on the basis of fully
understanding the genetic variation and diversity structure of cotton can a solid foundation be laid for subsequent
GS modeling (Peng et al., 2021).

2.3 Association analysis methods between genetic variation and prediction models

The association analysis between genetic variation and trait phenotype is a key link in building genomic
prediction models. In cotton breeding, traditional genome-wide association analysis (GWAS) and quantitative trait
mapping (QTL mapping) have been widely used to discover gene loci that affect yield, quality, and resistance (Tan
et al., 2024). However, GWAS can usually only detect a few significant main effect loci, and it is difficult to
capture most of the minor effect genes for complex quantitative traits. The genomic prediction model improves
the utilization efficiency of minor effect genes by integrating the effects of all markers. Commonly used GS
statistical models include: GBLUP, RR-BLUP, BayesA/B/C, LASSO, etc. These methods are similar to
multivariate regression in principle, but the difference lies in the different prior assumptions about marker effects.
In practice, the model can be selected according to the genetic architecture of the trait. For example, for traits such
as fiber quality that may be controlled by fewer large-effect QTLs, the Bayesian model sometimes performs better;
while for traits such as yield that are highly controlled by multiple genes, RR-BLUP and other models that assume
uniform minor effects are more robust (Budhlakoti et al., 2022).

Machine learning algorithms such as random forests (RF) and support vector machines (SVM) do not need to
assume linear additivity and can capture nonlinear interactions between markers. They are introduced into GS to
improve prediction capabilities. For example, a study used a machine learning model to successfully predict the
response genes of cotton under low temperature stress, with an accuracy significantly higher than that of the
traditional linear model. In the process of GS model training, cross-validation or independent validation sets are
usually used to evaluate the prediction accuracy (such as correlation coefficient or root mean square error). It is
worth noting that cotton is an allotetraploid, and the interaction between its A and D subgenomes may affect the
prediction model. Homologous genes and linkage disequilibrium structure should be fully considered. Based on
association analysis and combined with genetic parameters (such as marker variance and heritability), the training
set selection and weighted modeling strategies can also be optimized (Billings et al., 2022). The association
discovery and modeling of genetic variation and phenotype is a process of continuous iterative optimization.
Reasonable selection of analysis methods and adjustment in combination with cotton genetic characteristics can
improve the performance of genomic prediction models and promote the successful implementation of predictive
breeding.

3 Application of AI Algorithms in Cotton Breeding

3.1 Machine learning algorithms

Machine learning, with its powerful nonlinear modeling capabilities, is increasingly becoming a powerful tool for
cotton breeding data analysis. Classic machine learning algorithms such as random forest (RF), support vector
machine (SVM), gradient boosting tree, etc. have been used in cotton genome prediction and trait mining research.
For example, the random forest algorithm can evaluate the relative importance of each gene marker to the trait by
integrating a large number of decision trees, thereby achieving accurate prediction of complex quantitative traits.
Dhaliwal et al. (2022) used random forest combined with long-term field trial data to successfully predict the yield
performance of cotton under different conservation tillage measures. The model not only gave high-precision

150



W

N\
\\\)’// Cotton Genomics and Genetics 2025, Vol.16, No.3, 148-162
CropSci Publishen http://cropscipublisher.com/index.php/cgg

predictions, but also provided an explanation of the factors affecting yield, which has reference value in actual
agronomic decision-making. Support vector machines have outstanding performance in small sample modeling
and high-dimensional data processing. Studies have used SVM combined with cotton gene expression data to
predict disease resistance genes with a high accuracy rate. In addition, clustering algorithms can be used for
genetic diversity analysis and kinship division of cotton germplasm resources, providing a basis for combining
parents. It should be pointed out that machine learning models often have many hyperparameters, which need to
be optimized through methods such as cross-validation to prevent overfitting and improve generalization ability.
In cotton genomic selection, the introduction of machine learning algorithms helps to capture non-additive
interaction effects between markers and improve prediction accuracy. For example, Zhao et al. (2023) integrated
machine learning methods into gene regulatory network analysis to identify key control genes affecting cottonseed
yield. This shows that machine learning can not only be used to predict trait values, but also to discover important
breeding factors. In breeding practice, machine learning models can also integrate phenotypic imaging data to
achieve automatic measurement and evaluation of cotton agronomic traits.

3.2 Construction and optimization of deep learning models

As a subfield of machine learning, deep learning is characterized by multi-layer neural networks and can
automatically extract complex data features. It is emerging in cotton genetic improvement research. Compared
with traditional machine learning, deep learning models (such as convolutional neural networks CNN, recurrent
neural networks RNN, graph neural networks GNN, etc.) have end-to-end learning capabilities and are
particularly suitable for processing large-scale, high-dimensional genomic and phenotypic data. In cotton breeding,
a typical application of deep learning is to combine high-throughput phenotypic imaging for trait prediction. For
example, Li et al. (2024) used a deep convolutional neural network to analyze high-throughput image data of
cotton fruit branch angles, extracted phenotypic characteristics related to genotypes, and then combined GWAS to
locate key genes affecting fruit branch angles, greatly improving the efficiency of trait genetic analysis. This
combination of "deep phenotypetgenome" provides a new paradigm for quantitative trait improvement. In
addition, deep learning can also be directly used to build genomic prediction models. Budhlakoti et al. (2022)
developed the DeepGS model, which inputs the whole genome SNP sequence into a multi-layer neural network to
capture the complex relationship between markers and phenotypes in a nonlinear way, showing better prediction
accuracy than GBLUP. In cotton, Zhao et al. (2024)'s research is unique: they used a combination of convolutional
neural networks and Transformers to develop the DeepFDML deep model, which specifically predicts functional
methylation sites in the cotton genome. DeepFDML trained a CNN-Transformer hybrid network on thousands of
known functional methylation sites, and ultimately increased the model's area under the ROC curve from 0.65 to
0.82, significantly outperforming traditional methods. This shows that deep learning has unique advantages in
mining complex "gene-epigene-phenotype" relationships. Of course, deep models often require massive data
support, and the training process is computationally intensive, requiring the use of high-performance computing
resources such as GPUs (Yan et al., 2024). In terms of model optimization, regularization, Dropout and other
techniques can alleviate overfitting, and hyperparameter adjustment and architecture improvements (such as
adding attention mechanisms, autoencoder pre-training, etc.) can improve model performance.

3.3 Integration and analysis of multi-environment data

In the actual breeding process, different ecological environments have a significant impact on the performance of
cotton traits, so how to integrate multi-environment data to improve the generalization ability of the model is an
important topic. In traditional breeding experiments, multi-point ring tests are often used to evaluate the
adaptability and stability of varieties. However, incorporating environmental factors into genomic prediction
models remains challenging because environmental variables are often difficult to quantify and there is an
interaction between genes and the environment (GxXE). Current research shows that genomic predictions in
multiple environments can make progress by combining statistical models and machine learning. For example, the
so-called “reaction paradigm model” adds environmental covariates to GS or constructs environmental principal
components to explain GXE variation in genomic prediction (Budhlakoti et al., 2022). In cotton, methods such as
Jarquin have been used to improve predictions of yields in different locations, but their application is not yet
widespread.
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Zhang et al. (2025) recently conducted a breakthrough in genome-wide association and prediction analysis of
resistance to Verticillium wilt using data from natural cotton populations from different test sites in Xinjiang that
have been identified for many years. As a result, 10 disease resistance QTL loci that are stable in multiple
environments were identified, and a genomic selection breeding model was established based on these loci, which
was verified in the offspring population for its good predictive ability for disease resistance phenotypes. This case
proves that the multi-environment GS model can identify robust favorable allele combinations and achieve
effective improvement of traits in complex environments. The integration of environmental data also includes the
quantification of factors such as climate and soil. For example, meteorological indicators at the test site can be
obtained through remote sensing, or measured environmental parameters can be used as covariates to add to the
model. Some scholars have also proposed using the multimodal capabilities of deep learning to simultaneously
input environmental and genomic data into the neural network, allowing the model to autonomously learn the
interaction between the two. At present, for crops such as cotton, a major bottleneck in the integration of
multi-environment data is adaptability: the model performs well in one region, but the accuracy may decrease
when it is transferred to another region, so a larger range of training data and more physically explanatory
environmental representations are needed (Gapare et al., 2018). With the construction of cotton experimental
station networks and big data platforms in various countries, more abundant multi-environment
genotype-phenotype data will be available in the future, creating conditions for the development of robust
cross-environment prediction models. Multi-environment genomic prediction is expected to improve the
reliability of breeding selection and screen out new cotton varieties that are both high-yielding and widely
adaptable, which is of practical significance for responding to climate change and heterogeneous environmental
challenges.

4 Research Progress on Prediction of Major Cotton Traits

4.1 Prediction models for yield traits

Increasing cotton yield has always been the primary goal of breeding, and genomic prediction provides a new way
to accelerate the selection of high-yield varieties. Cotton yield traits include seed cotton yield and its components
(such as boll weight, boll number per plant, lint percentage, etc.), which are controlled by quantitative genes and
easily affected by the environment. Early gene mapping studies have identified many QTLs related to yield, but
the effect of a single locus is limited (Sun et al., 2022). Genomic selection predicts yield performance by
integrating whole genome information. The Australian CSIRO study was the first to verify the prediction effect of
GS on yield in a large-scale cotton breeding population: Li et al. (2022) conducted genotyping and two-season
field trials on cotton of 1,385 breeding lines and established multiple prediction models. The results showed that
the Bayesian model combining genomic markers and pedigrees had a correlation coefficient of 0.64 for the
prediction of lint yield, and could accurately distinguish high-yield materials in lines that had not been field tested.
This suggests that GS can help eliminate low-yield genotypes in the early breeding generation and improve
selection efficiency. In the US public breeding program, researchers have also evaluated the feasibility of GS for
yield traits. Billings et al. (2022) pointed out that the accuracy of genomic prediction of cotton yield and related
agronomic traits is currently slightly lower than that of fiber quality and other traits, but is comparable to
traditional phenotypic selection. With the optimization of models and the improvement of phenotypic accuracy,
there is room for further improvement. They suggested that GS could be implemented on quality traits first, and
then gradually expanded to complex traits such as yield after accumulating experience. In addition to directly
predicting yield, the combination of high-throughput phenotyping and GS is also a direction of progress. For
example, the extraction of cotton field canopy characteristics through remote sensing images and the use of
machine learning models to predict final yield have been successful at the regional scale (Dhaliwal et al., 2022). In
China, some scholars have used whole genome association analysis to identify key loci that affect yield
composition and used them for marker-assisted selection (MAS), but the application of GS is still in its infancy.
With the mapping of genetic variation maps of my country's cotton core germplasm and the accumulation of
breeding big data, the role of genomic prediction in high-yield cotton breeding will gradually emerge. It is worth
mentioning that Al technology can also help analyze the complex mechanism of yield formation. For example,
Zhao et al. (2023) integrated transcriptome and machine learning and discovered multiple major regulatory genes
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that affect boll number and boll weight at the same time. These findings provide gene targets for directly
improving yield through gene editing and other means. In summary, the research on genomic prediction breeding
in cotton yield improvement has made initial progress. In the future, with more perfect models and more training
data, it is expected to achieve high-precision prediction and efficient selection of yield traits.

4.2 Prediction studies on stress resistance traits

Common adversities in cotton production include diseases (such as Verticillium wilt, Fusarium wilt), drought,
high salt, etc. Breeding new stress-resistant varieties is the key to ensuring stable yield. Traditional stress-resistant
breeding is often time-consuming and labor-intensive, and genomic prediction is expected to accelerate this
process. In terms of disease-resistant breeding, genomic selection technology has shown feasibility (Li, 2024).
Zhang et al. (2025) used multi-environment Verticillium wilt resistance identification data of 1 152 upland cotton
germplasms to construct a GS model for disease resistance traits. Based on the multi-year stable QTL information
training model, they predicted the disease resistance of an F»3 segregating population, and the correlation
coefficient was above 0.5, which was significantly better than phenotypic screening alone. More importantly, the
model predicted that the selected materials showed higher disease resistance in the field, proving that GS is
practical in cotton disease resistance breeding. This study also located 10 major disease resistance QTLs in
combination with GWAS and aggregated them in breeding materials, reflecting the power of association analysis
combined with GS (Figure 1). For drought resistance, salt and alkali resistance and other stresses, molecular
biological methods are more often used at home and abroad to clone functional genes or create transgenic
materials. There are few reports on the application of GS in drought-resistant breeding. The reasons are that
drought resistance phenotypes are difficult to obtain and that environmental interactions are strong, making
predictions complicated. However, some indirect traits such as drought-related physiological indicators can be
used as alternative phenotypes to apply GS models. At present, studies have summarized the physiological and
molecular regulatory mechanisms of cotton drought and salt tolerance, providing candidate markers and genes for
subsequent genome predictions (Ma et al., 2021). For example, the cloned GhCBL1-GhCIPK signaling pathway
genes are involved in the regulation of cotton drought resistance. If corresponding markers can be developed, they
can be incorporated into the GS model to improve the prediction accuracy of drought resistance. Epigenetic
information has also been shown to be related to stress resistance. Zhao et al. (2024) found that 36% of the
expression variations of resistance-related genes were associated with DNA methylation variations, but not with
conventional genetic variations. These epigenetic markers independent of DNA sequences can also be used to
assist prediction models, thereby improving the ability to capture stress resistance. It can be expected that with the
development of multi-omics technology, stress-resistant breeding will shift from single gene engineering to whole
genome integration optimization. Combining genomic selection with high-pressure screening (such as artificial
inoculation of pathogens and simulated drought stress) is expected to quickly select stress-resistant superior plants
from a large number of offspring. In general, the research on genomic prediction of cotton stress resistance traits
has just started but has broad prospects. By constructing an intelligent model that comprehensively considers
genomic, epigenetic and environmental factors, we can expect to achieve early prediction of disease resistance and
stress resistance potential and accelerate the breeding process of new stress-resistant cotton varieties.

4.3 Advances in predicting fiber quality traits

Fiber quality (including fiber length, strength, fineness, etc.) is the core indicator for measuring the value of cotton,
and is also a trait that has a trade-off with yield in breeding. Genomic prediction is of special significance in
improving fiber quality, because improving quality in traditional breeding often comes at the expense of yield.
Through GS, it is expected to discover gene combinations that increase yield without reducing quality, and
achieve synergistic improvement of the two. At present, cotton fiber quality is one of the most significant areas of
GS research. CSIRO's experiments have shown that the accuracy of GS prediction of fiber quality is much higher
than that of yield: in its study of 1 385 materials, the prediction accuracy of the average length of the upper half of
the fiber and the specific breaking strength reached 0.76 and 0.65 respectively. This means that long fibers and
high-strength materials can be reliably distinguished based on genotype alone, which provides the possibility for
quality-oriented selection. The reason for this phenomenon may be that the genetic control of fiber quality is
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relatively simple, the main effect gene plays a greater role, and the impact of the environment is relatively small
relative to yield, so the GS model is more effective. In the analysis of the US public breeding program, it was also
found that fiber quality traits are more suitable for GS implementation to speed up the screening of new lines and
reduce the workload of field fiber testing (Billings et al., 2022).
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Figure 1 Pyramiding effect of 10 LsnpRs. (A) Distribution of DI in cotton accessions carrying different numbers of Lsnp®R. The x-axis
represents cotton accessions carrying 1-10 LsnpR. The y-axis represents All-b disease index (DI) across all environments. The letters
indicate the statistical test after the #-test (p <0.001). (B) The correlation between the DI predicted by the MDIC and the actual DI.
The x-axis represents predicted DI; the y-axis represents the actual DI of the corresponding genotype materials. (C) The genotypes of
19 F; individuals at 5 Lsnps. ZZM?2 and XLZ36 are resistant and susceptible parents, respectively. (D) Correlation between actual DI
and predicted DI in 19 F2; lines. (E) Correlation between extracted proportion of diseased area in stem sections and predicted DI in
19 F23 lines. (F) Correlation between actual vascular pathogen content and predicted DI in 19 F»:3 lines. D-F are all simple linear
regressions, and the p-value represents the hypothesis that the slope is non-zero. (G) Six extreme F»:3 lines were selected from the
predicted DI, with images showing the disease phenotype and cross-sections of stems at leaf nodes. Photographed at 13 days
post-inoculation. The yellow number in the top right corner indicates the number of LsnpR carried by the line. Fam1-Fam3 are lines
with the highest predicted DI. Fam15, 16, and 19 are lines with the lowest predicted DI. Scale bar, 3 cm. (H-J) The effect of
enhancing VW resistance in existing cotton materials after transformation from LsnpS to Lsnp®. (H-J) Represents the DI distribution
between the Lsnp® series cotton varieties and LsnpR series cotton varieties at Lsnp1, 4, and 9 with low frequency. The genotypic map
(below x-axis) shows haplotypes across accessions, with the upper line graph indicating mean DI per haplotype. The black dots
represent the actual DI, and the magenta dots represent the predicted DI by the MDIC. BLUE, best linear unbiased estimates; MDIC,
molecular disease index calculator (Adopted from Zhang et al., 2025)
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In addition to high prediction accuracy, GS can also help break the genetic bottleneck of quality improvement.
The "subgenome modular design breeding" proposed by Chinese scholars is an innovative idea: by comparing the
differences in the contribution of the two subgenomes of tetraploid upland cotton to fiber development, the genetic
modules that restrict quality are identified, and molecular methods are used to recombinantly design the key gene
combinations therein, thereby breaking through the limitations of quality improvement. This concept has made
progress in preliminary experiments and is expected to be verified in future breeding practices and combined with
GS methods (Zhang and Wang, 2024). At the same time, the research of the Xinjiang Production and Construction
Corps used the excellent allele variation of sea island cotton to introgress into the upland cotton background,
significantly improving the latter's fiber length and strength (Sun et al., 2022). These excellent alleles can also be
incorporated into the GS model through marker development to improve the prediction and selection efficiency of
quality. In recent years, with the in-depth study of high-quality cotton germplasm resources, several important
genes affecting fiber development have been cloned or located, such as GhPAP and other fiber cell wall
synthesis-related genes, whose downregulation will lead to a significant decrease in fiber strength. Incorporating
these gene loci information into GS can further improve the biological interpretability and effectiveness of the
model. At the breeding practice level, India, the United States and other countries have used GS to screen
intermediate materials with excellent fiber quality, accelerating the introduction of new lines (Islam et al., 2019).
In my country, there are still few studies on genomic prediction of cotton fiber quality, but the relevant foundation
has been established: cotton genome sequencing and variation identification have revealed multiple structural
variations and candidate genes related to quality; the National Cotton Improvement Center has constructed a
series of recombinant inbred line populations with improved quality, which can provide training sets for GS. It can
be foreseen that in the near future, breeders will be able to use Al models to pre-evaluate the fiber quality and
yield of hundreds of recombinant offspring at the same time, and select excellent individuals that "have both fish
and bear's paw". This will greatly improve the efficiency and success rate of breeding of high-quality cotton
varieties in my country, and promote fiber quality breeding into a new stage of intelligence.

5 Case Studies: Practical Applications of Al in Cotton Breeding

5.1 Genomic prediction practices in CSIRO's cotton breeding program in Australia

The cotton breeding project of CSIRO, Australia is one of the examples of the successful application of genomic
prediction technology in crop breeding. Faced with the dual goals of improving fiber quality and maintaining high
yield, the breeding team of CSIRO began to try to incorporate GS into its breeding program in the 2010s. They
collected multi-season field phenotypic data of thousands of breeding materials and performed high-density
genotyping on them. In the process of improving the germplasm material resistant to two-spotted spider mites
through backcrossing, despite the continuous advancement of backcrossing generations (BC generations), the mite
resistance trait score of the selected material was always significantly better than that of the susceptible parent
Sicot 714B3F and remained stable. This resistance stability reflects that CSIRO has effectively retained the target
traits through GS and improved the disease and insect resistance without sacrificing the main agronomic traits.
The picture shows the significant differences between resistant and susceptible varieties under natural infection at
the phenotypic level, providing visual verification for the superior individuals selected by the GS model (Figure 2)
(Conaty et al., 2022). Li et al. (2022) reported in detail the results of CSIRO's implementation of genomic
prediction on 1,385 lines: the Bayesian LASSO model was combined with genomic SNP and pedigree data to
predict traits such as fiber length, strength and yield, achieving remarkable accuracy (length 0.76, strength 0.65,
yield 0.64). Of particular note, they found that the fusion of whole genome marker information with conventional
pedigree data can effectively improve prediction accuracy, indicating that genomic data has formed a beneficial
supplement to traditional breeding information. In practice, CSIRO has used GS to assist in the screening of
early-generation materials: for new combinations that have not been field tested, the fiber quality and yield
potential are predicted by genotype, and combinations with poor prediction values are eliminated, thereby
reducing the workload of field trials and accelerating the generation process. It is reported that after applying GS,
the breeding cycle of its new varieties was shortened by about 2 years, and the resource utilization efficiency was
significantly improved (Li et al., 2022).
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Figure 2 (A) Susceptible (Sicot 714B3F recurrent parent) and (B) resistant two-spotted spider mite cotton germplasm from the
CSIRO cotton breeding program (Photos: Lucy Egan). (C) Progress of breeding mite resistant germplasm showing that as backcross
(BC) generation number increases mite resistance scores have remained lower than the susceptible recurrent parent, Sicot 714B3F,
and relatively stable. Data from C. Trapero, used with permission (Adopted from Conaty et al., 2022)

CSIRO has also developed a new parent selection strategy in combination with GS. For example, in response to
the negative correlation between yield and quality that has been troubled in the past, they used the prediction
model to select hybrids with better fiber quality without significantly reducing yield. Today, CSIRO's cotton
varieties enjoy a reputation in the international market for their excellent quality. This successful case shows that
integrating Al-driven genomic prediction into the traditional breeding process can achieve a "win-win" in
breeding efficiency and breeding effect. CSIRO's experience also provides a reference for other crop breeding,
that is, it is necessary to establish a high-quality phenotype-genotype database, continuously optimize the
prediction model, and gradually expand the application scope of GS in actual decision-making. It can be expected
that CSIRO will further try to integrate environmental data, phenotypic images and other information into
predictions in the future, and build a more intelligent breeding decision support system to maintain its
international leading position in cotton breeding.

5.2 Comparison of genomic selection methods in U.S. public cotton breeding programs

In the United States, since commercial cotton breeding is mainly dominated by private enterprises, public
breeding units are particularly active in exploring new technologies. In recent years, the United States Department
of Agriculture (USDA) has conducted feasibility studies on cotton genomic selection in collaboration with several
universities. The goal is to evaluate the effects of GS on different traits and provide decision-making basis for
public breeding programs. Billings et al. (2022) collected a large amount of phenotypic data from regional trials of
cotton in the United States, including yield, quality and disease resistance traits, and used existing cotton
high-density SNP chips to perform typing analysis on these varieties. They used multiple statistical models for
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comparison and found that: for quality traits such as fiber length and strength, the genomic prediction accuracy is
high, and GS can be fully implemented in early-generation screening; for traits such as yield and maturity, the
prediction accuracy is relatively low but still comparable to the efficiency of traditional family selection. Based on
this, they suggested that public breeding projects can be divided into "two steps": first, introduce GS in fiber
quality improvement to accelerate the cultivation of lines that meet industrial high-end requirements; then, with
the accumulation of more environmental data and model improvement, expand GS to complex traits such as yield
and stress resistance (Billings et al., 2022). It is worth mentioning that the study also compared the effects of
different algorithms, including G-BLUP, BayesC, and random forests, and found that the stability of traditional
linear models was slightly better when the amount of data was limited. But they also pointed out that machine
learning and deep learning may have greater potential in the future. Some American breeders have begun to try to
use simple artificial neural network models to simulate the combining ability of cotton hybrid combinations to
predict which parent combinations are more likely to produce excellent offspring (Patil et al., 2023). These
explorations of public projects have laid the foundation for the promotion of GS in cotton breeding.

The experience of the United States also emphasizes the importance of model interpretability by breeders: they
expect the prediction model to not only give results, but also indicate which markers or genes are most important
in trait control, so as to verify with traditional genetic knowledge. Therefore, the US team often combines GS
analysis with GWAS, incorporating significant markers into the model or annotating the markers with the highest
model weight. This practice has increased breeders' trust in Al models and increased the adoption rate of GS
results in practice. Overall, the US public breeding department has clarified the advantages and disadvantages of
GS and its application boundaries through comparative analysis, providing a scientific basis for the
implementation of technology. At present, they are promoting the establishment of a cotton breeding big data
platform to integrate scattered historical breeding data and create conditions for the large-scale implementation of
artificial intelligence-assisted breeding in the next step.

5.3 Intelligent design breeding systems in China's cotton breeding

Compared with Europe and the United States, my country's practice of artificial intelligence-enabled cotton
breeding started later but progressed rapidly. On the one hand, national scientific research institutions and
universities are actively carrying out relevant research; on the other hand, enterprises and new R&D institutions
have also joined in to develop intelligent breeding platforms. In recent years, the Cotton Research Institute of the
Chinese Academy of Agricultural Sciences has laid out the "smart breeding" research direction, using its own
cotton germplasm resource bank, phenotyping platform and molecular laboratory to explore the application of Al
technology in the entire process of cotton breeding (Si et al., 2022). One of the representative achievements is the
construction of a cotton whole genome selection breeding platform. A joint team from Zhejiang University and the
Chinese Academy of Agricultural Sciences reported in 2023 that they integrated 32.5 Tb of multi-omics and
phenotypic data, developed a central database for breeders to query gene expression, gene networks and
epigenetic information, and established a cotton trait prediction model and decision support system on this basis.
The platform is figuratively called the breeding "central kitchen". Breeders only need to input the genotypes of
candidate parents, and the system can give the predicted performance and optimal selection plan of the hybrid
combination on the target trait. Although the platform is still in the trial stage, it has shown great potential to
shorten the breeding cycle (Zhao et al., 2024).

Another eye-catching case is the cooperation between Lakeside Laboratory and Xinjiang Academy of Agricultural
Sciences to use Al to crack the genetic mechanism of cotton stress resistance and apply it to breeding. They
constructed a genome-wide DNA methylation map of 207 cotton varieties, identified 287 million single
methylation polymorphic sites, and developed a deep learning model DeepFDML to predict which methylation
variations affect gene expression, thereby discovering 43 key eQTM genes potentially involved in fiber
development. More importantly, they successfully increased cotton fiber length after editing one of the genes
through CRISPR. This achievement shows that Al can not only assist in selection, but also guide the discovery of
gene editing targets to achieve "design breeding". In terms of the development of intelligent breeding systems,
some domestic agricultural technology companies have also invested in it. Of course, the construction of my
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country's cotton intelligent breeding system is still in its early stages, but under the dual promotion of the
government and the market, the relevant infrastructure is gradually being improved. The national level has
deployed a major "digital seed industry" project to support the research and development of crop intelligent
breeding technology, among which cotton is one of the key targets. It can be foreseen that in the near future, a
phenotypic big data network covering major cotton-growing test stations, a database integrating the genome
information of major domestic cotton germplasm, and a set of open and shared Al breeding tools will be
established to empower the majority of breeders. China's intelligent breeding system will give full play to its
latecomer advantage, learn from foreign experience and integrate local massive data to achieve leapfrog
development. This will effectively promote the improvement of the breeding level of new cotton varieties in my
country and ensure the sustainable and healthy development of the national cotton industry.

6. Challenges and Future Directions

6.1 Limitations in data quality and model generalization

Although artificial intelligence has shown great prospects in cotton breeding, it still faces many challenges. The
first is the problem of data quality. High-precision genotype and phenotypic data are the basis for establishing
reliable prediction models, but it is not easy to obtain large-scale, high-quality data in actual breeding. For
example, field management and measurement errors at different test sites will cause phenotypic data noise, and
there may also be missed variants or typing errors in genotyping (Ma et al., 2021). These data noises will directly
affect the training effect and prediction accuracy of the model. Therefore, it is necessary to improve data quality
through repeated experiments, standardized measurements and strict data cleaning. As an allopolyploid, cotton has
a complex genome that makes accurate typing difficult, and some structural variants and homologous fragments
may not be detected or correctly located (Sun et al., 2022). This lack of information will weaken the model's
explanatory power for traits. The second is the limited generalization ability of the model. A model trained in a
specific population and environment is often difficult to directly apply to materials with large differences in
genetic basis or under different ecological conditions. For example, the drought prediction model established on
Xinjiang data may not be applicable to varieties in the cotton region of the Yellow River Basin. Therefore, the
model needs to have certain transfer learning and adaptive capabilities. Many current GS models will perform
significantly worse outside the training set, which is one of the practical problems facing cotton Al breeding (Liu
and Huang, 2022). To improve the generalization of the model, we can consider: increasing the diversity of
training data to cover more genetic backgrounds and environments; introducing hierarchical models to embed
population division or environmental classification into the model structure; and using ensemble learning to
improve robustness by fusing multiple models. High-dimensional labeled data can easily lead to model overfitting,
and feature selection or regularization methods are needed to constrain model complexity. Another problem is that
Al models are highly dependent on input data. When the genotype of the new material has allelic variation that
does not appear in the training set, the model may not be effectively used. This suggests that we should
continuously update the training data and model parameters to keep them synchronized with the latest genetic
diversity information. Although the data and model challenges are significant, they are not insurmountable. With
the promotion of the construction of agricultural big data platforms at the national level, cotton breeders will be
able to share richer data resources in the future. At the same time, the development of machine learning is also
providing new algorithms to improve the ability of small sample learning and cross-domain generalization. As
long as we face these shortcomings and actively improve them, artificial intelligence will surely serve cotton
breeding practice more maturely.

6.2 Challenges in integrating and analyzing multi-omics data

The formation of cotton traits involves multi-level information such as genome, transcriptome, epigenome,
metabolome and environmental factors. How to effectively integrate multi-omics data to improve breeding models
is a frontier topic in current artificial intelligence breeding. On the one hand, multi-omics data is huge and of
different types. For example, a cotton variety may have hundreds of millions of DNA methylation sites, tens of
thousands of expressed genes and thousands of metabolites. These data dimensions far exceed traditional
genotypes and phenotypes, and fusion analysis requires powerful computing power and new algorithms. On the
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other hand, there are complex associations and redundancies between multi-omics. For example, some key gene
mutations can cause chain changes in transcription and metabolism, resulting in highly correlated data; for
example, epigenetic changes are sometimes independent of DNA sequences and have additional contributions to
traits. Simply splicing different omics features into the model may cause information noise and overfitting.
Therefore, it is necessary to design special methods to extract key signals from each group and establish
hierarchical connections between them and phenotypes.

At present, some studies have initially shown the value of multi-omics fusion in cotton breeding. The work of
Zhao et al. (2024) proved that combining genomic and epigenomic data can reveal many functional variations that
cannot be identified by genomic data alone, providing a new perspective for trait prediction. By constructing a
multi-omics regulatory network, they locked 43 core genes for cotton fiber development, which would not be
found if they were based on traditional GWAS alone. However, the challenges that need to be solved in
multi-omics integration include: data standardization and alignment, different omics measurement scales are
different, and normalization processing is required; feature selection, multi-omics data dimensions are extremely
high, and how to screen out features that are truly associated with traits is difficult; model complexity, multi-omics
fusion models often contain a large number of parameters, and the risk is more prone to overfitting, so more
stringent regularization and cross-validation strategies need to be introduced (Guo et al., 2022). Deep learning
provides a powerful tool for multi-omics fusion, and its multimodal network can automatically learn associations
between different data modes. However, such models usually lack biological interpretability, which is also an
aspect that needs to be weighed. The cost of acquiring multi-omics data is high. For example, whole-genome
methylation sequencing of hundreds of cotton materials generates tens of TB of data. Therefore, economic costs
and computational overheads must be considered in practical applications. Nevertheless, with the innovation of
sequencing and detection technologies, multi-omics data will become increasingly abundant and accessible. We
have reason to believe that by developing smarter data fusion algorithms (such as neural networks, Transformers,
etc.) and making full use of cloud computing and high-performance computing clusters, multi-omics-driven
cotton intelligent breeding will become possible. It will enable breeders to understand the formation mechanism of
excellent traits from all aspects of genes, transcription, and epigenetics, and make more targeted designs and
selections on this basis.

6.3 Combining model interpretability with practical applications

Artificial intelligence models, especially deep learning models, are often regarded as "black boxes", which may
affect their promotion and application in the field of breeding. What breeders want to know more is: Why does the
model give such a prediction? Which genes or markers play a key role in it? If the model is difficult to explain, its
prediction results are often difficult to be directly adopted by breeding decisions. Therefore, improving the
biological interpretability of the model is a problem that Al breeding must face. One approach is to combine
traditional genetic knowledge to analyze the model output. For example, the largest number of markers in the GS
model can be counted and compared with known QTLs or genes to verify whether the model captures reasonable
genetic signals. If the markers emphasized by the model are connected to important functional genes, the
credibility of the results is increased (Billings et al., 2022).

Another approach is to use specialized interpretation algorithms, such as SHAP values and sensitivity analysis, to
quantify the impact of each input marker on the prediction, thereby identifying the gene regions that the model
"values". A recent study explained the random forest model for cotton yield prediction and found that some of the
markers that the model assigned the highest weights were precisely the areas near the previously reported yield
QTLs. This shows that Al models can reproduce the judgment of human experts to a certain extent, thereby
enhancing the trust of breeders.

In order to facilitate practical application, the model needs to be closely integrated with the breeding process. For
example, develop a friendly user interface so that breeders can input data and obtain prediction results without
knowing programming; embed models into breeding management systems to achieve real-time prediction and
decision support; provide model uncertainty indicators to remind users to be cautious when the prediction
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confidence is low. These are all the work being promoted in the current application of Al breeding. In terms of
promotion and application, it is also important to train breeders to master basic data analysis and model
interpretation skills. Only when breeders understand the model can they better use it to guide practical work such
as hybrid combination design and generation advancement. China has already taken some actions in this regard,
such as organizing national cotton breeding backbones to participate in the "Digital Seed Industry and Intelligent
Breeding" training course to share Al breeding cases and experiences. It can be foreseen that in the next few years,
artificial intelligence breeding tools will be gradually implemented in front-line breeding units and continuously
improved based on feedback. At that time, the model will no longer be a mysterious black box, but will become a
daily auxiliary tool similar to soil testing and disease diagnosis, and will be skillfully used by breeders.

7 Concluding Remarks

Artificial intelligence technology is gradually being integrated into cotton breeding research and has achieved
initial results. Predictive breeding models such as genomic selection have made useful attempts to improve cotton
yield, fiber quality and stress resistance traits: in terms of yield, high-yield genotypes are predicted through whole
genome markers, which improves the selection efficiency of early breeding generations; in terms of fiber quality,
the GS model achieves high-precision prediction of indicators such as length and strength, promoting the selection
of high-quality new lines; in terms of stress resistance, the prediction model combined with machine learning
successfully identified multi-environmentally stable disease-resistant QTLs, accelerating the screening of
disease-resistant varieties. Internationally, Australia's CSIRO took the lead in integrating genomic prediction into
the breeding process, significantly shortening the breeding cycle and cultivating high-quality and high-yield new
varieties; the US public breeding department systematically evaluated the effects and limitations of GS, laying the
foundation for further promotion and application. Domestic scientific research institutions have also actively
deployed intelligent breeding research, developed a cotton intelligent breeding platform, and used Al technology
to crack the genetic mechanism of some complex cotton traits. It can be said that artificial intelligence is helping
breeders break through the bottleneck of traditional breeding and realize the transformation of breeding decisions
from experience-driven to data-driven. Although the application of Al-assisted breeding in cotton is still in its
infancy, the existing results have proved its great potential and bright prospects.

Looking to the future, the deep integration of artificial intelligence and genome prediction will lead cotton
breeding into a new era. On the one hand, with the advancement of sequencing and phenotyping technologies,
breeding will obtain exponentially growing multidimensional data to provide fuel for AI models. Whole genome
selection will be combined with new technologies such as gene editing and epigenetic regulation to form
integrated innovation in breeding technology. Intelligent algorithms will be able to handle more complex breeding
goals, such as improving yield, quality and multi-resistance at the same time, and realizing the optimal design of
comprehensive traits. On the other hand, the emergence of a new generation of Al models (such as neural
networks, generative Al, etc.) is expected to further improve the accuracy and breadth of breeding predictions. In
the future, cotton breeding decisions may be generated by Al with countless breeding schemes, taking into
account gene combinations, environmental adaptability and market demand, and selecting the best scheme for
breeders' reference. The breeding cycle will also be greatly shortened due to assisted generation prediction. In
theory, a breeder is expected to experience a complete iteration of multiple breeding cycles in his career, which
was unimaginable in the past. Of course, we also need to realize that on the road to "breeding 5.0", there are still
many scientific problems to be solved, such as how to accurately simulate the impact of gene interactions on traits,
how to integrate evolution and niche theory in the model, etc. These require in-depth cross-disciplinary and
cooperation between genetics and artificial intelligence. But what is certain is that artificial intelligence will serve
as a powerful new engine to drive cotton breeding forward and contribute to the safety of textile raw materials and
sustainable agriculture.

In order to better integrate artificial intelligence technology into cotton breeding practice, we put forward the

following suggestions: First, establish a standardized cotton breeding big data system. Including unified

phenotypic measurement specifications, building a national joint breeding database, and improving the genotype

information sharing platform, etc., to provide high-quality training data for Al models. Secondly, strengthen the
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training of interdisciplinary talents, encourage breeding experts to learn data science methods, and cultivate more
compound talents who understand both genetic breeding and Al algorithms to open up the "last mile" of
technology application. Thirdly, Al breeding should be promoted step by step: starting with easy-to-predict traits
such as fiber quality, accumulating experience in practice, and then gradually expanding to complex goals such as
yield and stress resistance, step by step, and taking the lead. Fourth, scientific research and production should be
closely integrated to strengthen demonstration and application. Select several advantageous cotton-producing
areas to establish "intelligent breeding demonstration stations" to actually test the selection effect and economic
benefits of AI models, and win the trust of the breeding community with example verification. Finally, formulate
relevant standards and specifications to ensure the reliability and repeatability of Al breeding software tools, and
avoid waste of resources caused by improper application. In short, we believe that with the joint efforts of all
parties in industry, academia and research, the road to Al-enabled cotton breeding will become wider and wider. In
the future, the cultivation of new varieties of "super cotton" with high yield, high quality and multi-resistance will
no longer rely entirely on the intuition and experience of breeders, but will be accurately obtained through
scientific data analysis and prediction with the assistance of artificial intelligence. This will greatly improve
breeding efficiency, reduce breeding costs, and promote the quality improvement, efficiency increase and
sustainable development of the cotton industry in my country and even the world. The tide of the times is rolling
forward, and the integrated development of artificial intelligence and cotton breeding has become a general trend.
We have reason to be confident in its bright prospects.
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